Advertisement

Applied Microbiology and Biotechnology

, Volume 100, Issue 24, pp 10237–10249 | Cite as

Ionic liquid-tolerant microorganisms and microbial communities for lignocellulose conversion to bioproducts

  • Chaowei Yu
  • Blake A. Simmons
  • Steven W. Singer
  • Michael P. Thelen
  • Jean S. VanderGheynstEmail author
Mini-Review

Abstract

Chemical and physical pretreatment of biomass is a critical step in the conversion of lignocellulose to biofuels and bioproducts. Ionic liquid (IL) pretreatment has attracted significant attention due to the unique ability of certain ILs to solubilize some or all components of the plant cell wall. However, these ILs inhibit not only the enzyme activities but also the growth and productivity of microorganisms used in downstream hydrolysis and fermentation processes. While pretreated biomass can be washed to remove residual IL and reduce inhibition, extensive washing is costly and not feasible in large-scale processes. IL-tolerant microorganisms and microbial communities have been discovered from environmental samples and studies begun to elucidate mechanisms of IL tolerance. The discovery of IL tolerance in environmental microbial communities and individual microbes has lead to the proposal of molecular mechanisms of resistance. In this article, we review recent progress on discovering IL-tolerant microorganisms, identifying metabolic pathways and mechanisms of tolerance, and engineering microorganisms for IL tolerance. Research in these areas will yield new approaches to overcome inhibition in lignocellulosic biomass bioconversion processes and increase opportunities for the use of ILs in biomass pretreatment.

Keywords

Ionic liquid tolerance Microbial community enrichment Ionic liquid pretreatment Engineering ionic liquid tolerance 

Notes

Compliance with ethical standards

Funding

This work was supported by National Institute of Food and Agriculture project CA-D-BAE-2228-RR, the UC Lab Fees Research Program under project no. 237496, and completed as part of the Joint BioEnergy Institute, supported by the US Department of Energy, Office of Science, Office of Biological and Environmental Research, through contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the US Department of Energy.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Allgaier M, Reddy A, Park JI, Ivanova N, D’Haeseleer P, Lowry S, Sapra R, Hazen TC, Simmons BA, VanderGheynst JS, Hugenholtz P (2010) Targeted discovery of glycoside hydrolases from a switchgrass-adapted compost community. PLoS One 5(1). doi: 10.1371/journal.pone.0008812
  2. Alves PC, Hartmann DO, Nunez O, Martins I, Gomes TL, Garcia H, Galceran MT, Hampson R, Becker JD, Pereira CS (2016) Transcriptomic and metabolomic profiling of ionic liquid stimuli unveils enhanced secondary metabolism in Aspergillus nidulans. BMC Genomics 17. doi: 10.1186/s12864-016-2577-6
  3. Armstrong Z, Mewis K, Strachan C, Hallam SJ (2015) Biocatalysts for biomass deconstruction from environmental genomics. Curr Opin Chem Biol 29:18–25. doi: 10.1016/j.cbpa.2015.06.032 PubMedCrossRefGoogle Scholar
  4. Bernot RJ, Brueseke MA, Evans-White MA, Lamberti GA (2005) Acute and chronic toxicity of imidazolium-based ionic liquids on Daphnia magna. Environ Toxicol Chem 24(1):87–92. doi: 10.1897/03-635.1 PubMedCrossRefGoogle Scholar
  5. Blanch HW, Wilke CR (1982) Sugars and chemicals from cellulose. Rev Chem Eng 1:71–119Google Scholar
  6. Bochner BR, Savageau MA (1977) Generalized indicator plate for genetic, metabolic, and taxonomic students with microorganisms. Appl Environ Microbiol 33(2):434–444PubMedPubMedCentralGoogle Scholar
  7. Bochner BR, Gadzinski P, Panomitros E (2001) Phenotype microarrays for high-throughput phenotypic testing and assay of gene function. Genome Res 11(7):1246–1255. doi: 10.1101/gr.186501 PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bokinsky G, Peralta-Yahya PP, George A, Holmes BM, Steen EJ, Dietrich J, Lee TS, Tullman-Ercek D, Voigt CA, Simmons BA, Keasling JD (2011) Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using engineered Escherichia coli. Proc Natl Acad Sci U S A 108(50):19949–19954. doi: 10.1073/pnas.1106958108 PubMedPubMedCentralCrossRefGoogle Scholar
  9. Borglin S, Joyner D, DeAngelis KM, Khudyakov J, D’Haeseleer P, Joachimiak MP, Hazen T (2012) Application of phenotypic microarrays to environmental microbiology. Curr Opin Biotechnol 23(1):41–48. doi: 10.1016/j.copbio.2011.12.006 PubMedCrossRefGoogle Scholar
  10. Boyarskiy S, Tullman-Ercek D (2015) Getting pumped: membrane efflux transporters for enhanced biomolecule production. Curr Opin Chem Biol 28:15–19. doi: 10.1016/j.cbpa.2015.05.019 PubMedCrossRefGoogle Scholar
  11. Buchanan BB, Gruissem W, Jones RL (eds) (2015) Biochemistry and molecular biology of plants. John Wiley & Sons.Google Scholar
  12. Chandra RP, Bura R, Mabee WE, Berlin A, Pan X, Saddler JN (2007) Substrate pretreatment: The key to effective enzymatic hydrolysis of lignocellulosics? In: Olsson L (ed) Biofuels, pp 67–93.  Springer Berlin Heidelberg.Google Scholar
  13. Chang VS, Burr B, Holtzapple MT (1997) Lime pretreatment of switchgrass. Appl Biochem Biotechnol 63-5:3–19. doi: 10.1007/bf02920408 CrossRefGoogle Scholar
  14. Cheng G, Varanasi P, Li CL, Liu HB, Menichenko YB, Simmons BA, Kent MS, Singh S (2011) Transition of cellulose crystalline structure and surface morphology of biomass as a function of ionic liquid pretreatment and its relation to enzymatic hydrolysis. Biomacromolecules 12(4):933–941. doi: 10.1021/bm101240z PubMedCrossRefGoogle Scholar
  15. da Costa Lopes AM, João KG, Morais ARC, Bogel-Łukasik E, Bogel-Łukasik R (2013) Ionic liquids as a tool for lignocellulosic biomass fractionation. Sustain Chem Process 1(1):1. doi: 10.1186/2043-7129-1-3 CrossRefGoogle Scholar
  16. da Costa MS, Santos H, Galinski EA (1998) An overview of the role and diversity of compatible solutes in Bacteria and Archaea. In Biotechnology of Extremophiles. Springer Berlin Heidelberg, pp 117–153Google Scholar
  17. Dadi AP, Varanasi S, Schall CA (2006) Enhancement of cellulose saccharification kinetics using an ionic liquid pretreatment step. Biotechnol Bioeng 95(5):904–910. doi: 10.1002/bit.21047 PubMedCrossRefGoogle Scholar
  18. Dadi AP, Schall CA, Varanasi S (2007) Mitigation of cellulose recalcitrance to enzymatic hydrolysis by ionic liquid pretreatment. Appl Biochem Biotechnol 137:407–421. doi: 10.1007/s12010-007-9068-9 PubMedGoogle Scholar
  19. Datta S, Holmes B, Park JI, Chen ZW, Dibble DC, Hadi M, Blanch HW, Simmons BA, Sapra R (2010) Ionic liquid tolerant hyperthermophilic cellulases for biomass pretreatment and hydrolysis. Green Chem 12(2):338–345. doi: 10.1039/b916564a CrossRefGoogle Scholar
  20. Davidson AL, Dassa E, Orelle C, Chen J (2008) Structure, function, and evolution of bacterial ATP-binding cassette systems. Microbiol Mol Biol Rev 72(2):317–364. doi: 10.1128/mmbr.00031-07 PubMedPubMedCentralCrossRefGoogle Scholar
  21. Davin-Regli A, Bolla JM, James CE, Lavigne JP, Chevalier J, Garnotel E, Molitor A, Pages JM (2008) Membrane permeability and regulation of drug “influx and efflux” in enterobacterial pathogens. Curr Drug Targets 9(9):750–759. doi: 10.2174/138945008785747824 PubMedCrossRefGoogle Scholar
  22. DeAngelis KM, Gladden JM, Allgaier M, D’Haeseleer P, Fortney JL, Reddy A, Hugenholtz P, Singer SW, Vander Gheynst JS, Silver WL, Simmons BA, Hazen TC (2010) Strategies for enhancing the effectiveness of metagenomic-based enzyme discovery in lignocellulolytic microbial communities. Bioenergy Res 3(2):146–158. doi: 10.1007/s12155-010-9089-z CrossRefGoogle Scholar
  23. Deive FJ, Rodriguez A, Varela A, Rodrigues C, Leitao MC, Houbraken J, Pereiro AB, Longo MA, Sanroman MA, Samson RA, Rebelo LPN, Pereira CS (2011) Impact of ionic liquids on extreme microbial biotypes from soil. Green Chem 13(3):687–696. doi: 10.1039/c0gc00369g CrossRefGoogle Scholar
  24. Delcour AH (2009) Outer membrane permeability and antibiotic resistance. Biochim Biophys Acta-Proteins Proteomics 1794(5):808–816. doi: 10.1016/j.bbapap.2008.11.005 CrossRefGoogle Scholar
  25. Dickinson Q, Bottoms S, Hinchman L, McIlwain S, Li S, Myers CL, Boone C, Coon JJ, Hebert A, Sato TK, Landick R, Piotrowski JS (2016) Mechanism of imidazolium ionic liquids toxicity in Saccharomyces cerevisiae and rational engineering of a tolerant, xylose-fermenting strain. Microb Cell Factories 15. doi: 10.1186/s12934-016-0417-7
  26. Docherty KM, Kulpa CF (2005) Toxicity and antimicrobial activity of imidazolium and pyridinium ionic liquids. Green Chem 7(4):185–189. doi: 10.1039/b419172b CrossRefGoogle Scholar
  27. Dunlop MJ, Dossani ZY, Szmidt HL, Chu HC, Lee TS, Keasling JD, Hadi MZ, Mukhopadhyay A (2011) Engineering microbial biofuel tolerance and export using efflux pumps. Mol Syst Biol 7. doi: 10.1038/msb.2011.21
  28. Egorova KS, Ananikov VP (2014) Toxicity of ionic liquids: eco(cyto)activity as complicated, but unavoidable parameter for task-specific optimization. ChemSusChem 7(2):336–360. doi: 10.1002/cssc.201300459 PubMedCrossRefGoogle Scholar
  29. Empadinhas N, da Costa MS (2008) Osmoadaptation mechanisms in prokaryotes: distribution of compatible solutes. Int Microbiol 11(3):151–161. doi: 10.2436/20.1501.01.55 PubMedGoogle Scholar
  30. Erez O, Kahana C (2002) Deletions of SKY1 or PTK2 in the Saccharomyces cerevisiae trk1 Delta trk2 Delta mutant cells exert dual effect on ion homeostasis. Biochem Biophys Res Commun 295(5):1142–1149. doi: 10.1016/s0006-291x(02)00823-9 PubMedCrossRefGoogle Scholar
  31. Fort DA, Remsing RC, Swatloski RP, Moyna P, Moyna G, Rogers RD (2007) Can ionic liquids dissolve wood? Processing and analysis of lignocellulosic materials with 1-n-butyl-3-methylimidazolium chloride. Green Chem 9(1):63–69. doi: 10.1039/b607614a CrossRefGoogle Scholar
  32. Frederix M, Hutter K, Leu J, Batth TS, Turner WJ, Ruegg TL, Blanch HW, Simmons BA, Adams PD, Keasling JD, Thelen MP, Dunlop MJ, Petzold CJ, Mukhopadhyay A (2014) Development of a native Escherichia coli induction system for ionic liquid tolerance. PLoS One 9(7). doi: 10.1371/journal.pone.0101115
  33. Frederix M, Mingardon F, Hu M, Sun N, Pray T, Singh S, Simmons BA, Keasling JD, Mukhopadhyay A (2016) Development of an E. coli strain for one-pot biofuel production from ionic liquid pretreated cellulose and switchgrass. Green Chem. doi: 10.1039/C6GC00642F Google Scholar
  34. Freemantle M (1998) Designer solvents—ionic liquids may boost clean technology development. Chem Eng News 76(13):32–37. doi: 10.1021/cen-v076n013.p032 CrossRefGoogle Scholar
  35. Galbe M, Zacchi G (2007) Pretreatment of lignocellulosic materials for efficient bioethanol production. In: Olsson L (ed) Biofuels. Springer Berlin Heidelberg, pp 41–65Google Scholar
  36. Gallezot P (2008) Catalytic conversion of biomass: challenges and issues. ChemSusChem 1(8–9):734–737. doi: 10.1002/cssc.200800091 PubMedCrossRefGoogle Scholar
  37. Ganske F, Bornscheuer UT (2006) Growth of Escherichia coli, Pichia pastoris and Bacillus cereus in the presence of the ionic liquids BMIM BF4 and BMIM PF6 and organic solvents. Biotechnol Lett 28(7):465–469. doi: 10.1007/s10529-006-0006-7 PubMedCrossRefGoogle Scholar
  38. George A, Brandt A, Tran K, Zahari SMSNS, Klein-Marcuschamer D, Sun N, Sathitsuksanoh N, Shi J, Stavila V, Parthasarathi R (2015) Design of low-cost ionic liquids for lignocellulosic biomass pretreatment. Green Chem 17(3):1728–1734CrossRefGoogle Scholar
  39. Gomez LD, Steele-King CG, McQueen-Mason SJ (2008) Sustainable liquid biofuels from biomass: the writing’s on the walls. New Phytol 178(3):473–485. doi: 10.1111/j.1469-8137.2008.02422.x PubMedCrossRefGoogle Scholar
  40. Grkovic S, Brown MH, Skurray RA (2001) Transcription regulation of multidrug efflux pumps in bacteria. Semin Cell Dev Biol 12(3):225–237. doi: 10.1006/scdb.2000.0248 PubMedCrossRefGoogle Scholar
  41. Grous WR, Converse AO, Grethlein HE (1986) Effect of steam explosion pretreatment on pore-size and enzymatic-hydrolysis of poplar. Enzym Microb Technol 8(5):274–280. doi: 10.1016/0141-0229(86)90021-9 CrossRefGoogle Scholar
  42. Harrison ME, Dunlop MJ (2012) Synthetic feedback loop model for increasing microbial biofuel production using a biosensor. Front Microbiol 3. doi: 10.3389/fmicb.2012.00360
  43. Hartmann DO, Pereira CS (2013) A molecular analysis of the toxicity of alkyltributylphosphonium chlorides in Aspergillus nidulans. New J Chem 37(5):1569–1577. doi: 10.1039/c3nj00167a CrossRefGoogle Scholar
  44. Holtz WJ, Keasling JD (2010) Engineering static and dynamic control of synthetic pathways. Cell 140(1):19–23. doi: 10.1016/j.cell.2009.12.029 PubMedCrossRefGoogle Scholar
  45. Hoover AN, Tumuluru JS, Teymouri F, Moore J, Gresham G (2014) Effect of pelleting process variables on physical properties and sugar yields of ammonia fiber expansion pretreated corn stover. Bioresour Technol 164:128–135. doi: 10.1016/j.biortech.2014.02.005 PubMedCrossRefGoogle Scholar
  46. Jimenez DJ, Dini-Andreote F, van Elsas JD (2014) Metataxonomic profiling and prediction of functional behaviour of wheat straw degrading microbial consortia. Biotechnol Biofuels 7. doi: 10.1186/1754-6834-7-92
  47. Jing CQ, Mu LM, Ren TF, Li BN, Chen SJ, Nan WB (2014) Effect of 1-octyl-3-methylimidazolium chloride on cell replication and membrane permeability of Escherichia coli DH5 alpha. Bull Environ Contam Toxicol 93(1):60–63. doi: 10.1007/s00128-014-1269-7 PubMedCrossRefGoogle Scholar
  48. Jones CM, Lozada NJH, Pfleger BF (2015) Efflux systems in bacteria and their metabolic engineering applications. Appl Microbiol Biotechnol 99(22):9381–9393. doi: 10.1007/s00253-015-6963-9 PubMedPubMedCentralCrossRefGoogle Scholar
  49. Kaar WE, Gutierrez CV, Kinoshita CM (1998) Steam explosion of sugarcane bagasse as a pretreatment for conversion to ethanol. Biomass Bioenergy 14(3):277–287. doi: 10.1016/s0961-9534(97)10038-1 CrossRefGoogle Scholar
  50. Kaar JL, Jesionowski AM, Berberich JA, Moulton R, Russell AJ (2003) Impact of ionic liquid physical properties on lipase activity and stability. J Am Chem Soc 125(14):4125–4131. doi: 10.1021/ja028557x PubMedCrossRefGoogle Scholar
  51. Khudyakov JI, D’Haeseleer P, Borglin SE, DeAngelis KM, Woo H, Lindquist EA, Hazen TC, Simmons BA, Thelen MP (2012) Global transcriptome response to ionic liquid by a tropical rain forest soil bacterium, Enterobacter lignolyticus. Proc Natl Acad Sci U S A 109(32):E2173–E2182. doi: 10.1073/pnas.1112750109 PubMedPubMedCentralCrossRefGoogle Scholar
  52. Kilpelainen I, Xie H, King A, Granstrom M, Heikkinen S, Argyropoulos DS (2007) Dissolution of wood in ionic liquids. J Agric Food Chem 55(22):9142–9148. doi: 10.1021/jf071692e PubMedCrossRefGoogle Scholar
  53. Kim S, Holtzapple MT (2005) Lime pretreatment and enzymatic hydrolysis of corn stover. Bioresour Technol 96(18):1994–2006. doi: 10.1016/j.biortech.2005.01.014 PubMedCrossRefGoogle Scholar
  54. Kim JS, Lee YY, Kim TH (2016) A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresour Technol 199:42–48. doi: 10.1016/j.biortech.2015.08.085 PubMedCrossRefGoogle Scholar
  55. Klein-Marcuschamer D, Simmons BA, Blanch HW (2011) Techno-economic analysis of a lignocellulosic ethanol biorefinery with ionic liquid pre-treatment. Biofuels Bioprod Bioref-Biofpr 5(5):562–569. doi: 10.1002/bbb.303 CrossRefGoogle Scholar
  56. Kumar R, Mago G, Balan V, Wyman CE (2009) Physical and chemical characterizations of corn stover and poplar solids resulting from leading pretreatment technologies. Bioresour Technol 100(17):3948–3962. doi: 10.1016/j.biortech.2009.01.075 PubMedCrossRefGoogle Scholar
  57. Lau MW, Dale BE, Balan V (2008) Ethanolic fermentation of hydrolysates from ammonia fiber expansion (AFEX) treated corn stover and distillers grain without detoxification and external nutrient supplementation. Biotechnol Bioeng 99(3):529–539. doi: 10.1002/bit.21609 PubMedCrossRefGoogle Scholar
  58. Lee SH, Lee SB (2005) The Hildebrand solubility parameters, cohesive energy densities and internal energies of 1-alkyl-3-methylimidazolium-based room temperature ionic liquids. Chem Commun (27):3469–3471 doi: 10.1039/b503740a
  59. Lee SH, Doherty TV, Linhardt RJ, Dordick JS (2009) Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnol Bioeng 102(5):1368–1376. doi: 10.1002/bit.22179 PubMedCrossRefGoogle Scholar
  60. Li CZ, Wang Q, Zhao ZK (2008) Acid in ionic liquid: an efficient system for hydrolysis of lignocellulose. Green Chem 10(2):177–182. doi: 10.1039/b711512a CrossRefGoogle Scholar
  61. Li Q, He YC, Xian M, Jun G, Xu X, Yang JM, Li LZ (2009) Improving enzymatic hydrolysis of wheat straw using ionic liquid 1-ethyl-3-methyl imidazolium diethyl phosphate pretreatment. Bioresour Technol 100(14):3570–3575. doi: 10.1016/j.biortech.2009.02.040 PubMedCrossRefGoogle Scholar
  62. Li CL, Knierim B, Manisseri C, Arora R, Scheller HV, Auer M, Vogel KP, Simmons BA, Singh S (2010) Comparison of dilute acid and ionic liquid pretreatment of switchgrass: biomass recalcitrance, delignification and enzymatic saccharification. Bioresour Technol 101(13):4900–4906. doi: 10.1016/j.biortech.2009.10.066 PubMedCrossRefGoogle Scholar
  63. Liu LY, Chen HZ (2006) Enzymatic hydrolysis of cellulose materials treated with ionic liquid BMIM Cl. Chin Sci Bull 51(20):2432–2436. doi: 10.1007/s11434-006-2134-9 CrossRefGoogle Scholar
  64. Liu CG, Wyman CE (2004) Impact of fluid velocity on hot water only pretreatment of corn stover in a flowthrough reactor. Appl Biochem Biotechnol 113:977–987PubMedCrossRefGoogle Scholar
  65. Liu LP, Hu Y, Wen P, Li N, Zong MH, Ou-Yang BN, Wu H (2015) Evaluating the effects of biocompatible cholinium ionic liquids on microbial lipid production by Trichosporon fermentans. Biotechnol Biofuels 8. doi: 10.1186/s13068-015-0299-7
  66. Lloyd TA, Wyman CE (2005) Combined sugar yields for dilute sulfuric acid pretreatment of corn stover followed by enzymatic hydrolysis of the remaining solids. Bioresour Technol 96(18):1967–1977. doi: 10.1016/j.biortech.2005.01.011 PubMedCrossRefGoogle Scholar
  67. Lozano P, de Diego T, Guegan JP, Vaultier M, Iborra JL (2001) Stabilization of alpha-chymotrypsin by ionic liquids in transesterification reactions. Biotechnol Bioeng 75(5):563–569. doi: 10.1002/bit.10089 PubMedCrossRefGoogle Scholar
  68. Martins I, Hartmann DO, Alves PC, Planchon S, Renaut J, Leitao MC, Rebelo LPN, Pereira CS (2013) Proteomic alterations induced by ionic liquids in Aspergillus nidulans and Neurospora crassa. J Proteome 94:262–278. doi: 10.1016/j.jprot.2013.09.015 CrossRefGoogle Scholar
  69. Matsumoto M, Mochiduki K, Kondo K (2004) Toxicity of ionic liquids and organic solvents to lactic acid-producing bacteria. J Biosci Bioeng 98(5):344–347. doi: 10.1263/jbb.98.344 PubMedCrossRefGoogle Scholar
  70. Merino ST, Cherry J (2007) Progress and challenges in enzyme development for biomass utilization. In: Olsson L (ed) Biofuels. Springer Berlin Heidelberg, pp 95–120Google Scholar
  71. Mora-Pale M, Meli L, Doherty TV, Linhardt RJ, Dordick JS (2011) Room temperature ionic liquids as emerging solvents for the pretreatment of lignocellulosic biomass. Biotechnol Bioeng 108(6):1229–1245. doi: 10.1002/bit.23108 PubMedCrossRefGoogle Scholar
  72. Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96(6):673–686. doi: 10.1016/j.biortech.2004.06.025 PubMedCrossRefGoogle Scholar
  73. Mukhopadhyay A (2015) Tolerance engineering in bacteria for the production of advanced biofuels and chemicals. Trends Microbiol 23(8):498–508. doi: 10.1016/j.tim.2015.04.008 PubMedCrossRefGoogle Scholar
  74. Murnen HK, Balan V, Chundawat SPS, Bals B, Sousa LD, Dale BE (2007) Optimization of ammonia fiber expansion (AFEX) pretreatment and enzymatic hydrolysis of Miscanthus x giganteus to fermentable sugars. Biotechnol Prog 23(4):846–850. doi: 10.1021/bp070098m PubMedCrossRefGoogle Scholar
  75. Nakashima K, Yamaguchi K, Taniguchi N, Arai S, Yamada R, Katahira S, Ishida N, Takahashi H, Ogino C, Kondo A (2011) Direct bioethanol production from cellulose by the combination of cellulase-displaying yeast and ionic liquid pretreatment. Green Chem 13(10):2948–2953. doi: 10.1039/c1gc15688h CrossRefGoogle Scholar
  76. Nicolaou SA, Gaida SM, Papoutsakis ET (2010) A comparative view of metabolite and substrate stress and tolerance in microbial bioprocessing: from biofuels and chemicals, to biocatalysis and bioremediation. Metab Eng 12(4):307–331. doi: 10.1016/j.ymben.2010.03.004 PubMedCrossRefGoogle Scholar
  77. Nikaido H, Takatsuka Y (2009) Mechanisms of RND multidrug efflux pumps. Biochim Biophys Acta-Proteins Proteomics 1794(5):769–781. doi: 10.1016/j.bbapap.2008.10.004 CrossRefGoogle Scholar
  78. Ouellet M, Datta S, Dibble DC, Tamrakar PR, Benke PI, Li CL, Singh S, Sale KL, Adams PD, Keasling JD, Simmons BA, Holmes BM, Mukhopadhyay A (2011) Impact of ionic liquid pretreated plant biomass on Saccharomyces cerevisiae growth and biofuel production. Green Chem 13(10):2743–2749. doi: 10.1039/c1gc15327g CrossRefGoogle Scholar
  79. Pace S, Ceballos SJ, Harrold D, Stannard W, Simmons B, Singer SW, Thelen MP, VanderGheynst JS (2016) Enrichment of microbial communities tolerant to the ionic liquids tetrabutylphosphonium chloride and tributylethylphosphonium diethylphosphate. Appl Microbiol Biotechnol:1–14. doi: 10.1007/s00253-016-7525-5
  80. Pages JM, James CE, Winterhalter M (2008) The porin and the permeating antibiotic: a selective diffusion barrier in Gram-negative bacteria. Nat Rev Microbiol 6(12):893–903. doi: 10.1038/nrmicro1994 PubMedCrossRefGoogle Scholar
  81. Pernak J, Rogoza J, Mirska I (2001) Synthesis and antimicrobial activities of new pyridinium and benzimidazolium chlorides. Eur J Med Chem 36(4):313–320. doi: 10.1016/s0223-5234(01)01226-0 PubMedCrossRefGoogle Scholar
  82. Pernak J, Sobaszkiewicz K, Mirska I (2003) Anti-microbial activities of ionic liquids. Green Chem 5(1):52–56. doi: 10.1039/b207543c CrossRefGoogle Scholar
  83. Petkovic M, Ferguson J, Bohn A, Trindade J, Martins I, Carvalho MB, Leitao MC, Rodrigues C, Garcia H, Ferreira R, Seddon KR, Rebelo LPN, Pereira CS (2009) Exploring fungal activity in the presence of ionic liquids. Green Chem 11(6):889–894. doi: 10.1039/b823225c CrossRefGoogle Scholar
  84. Petkovic M, Ferguson JL, Gunaratne HQN, Ferreira R, Leitao MC, Seddon KR, Rebelo LPN, Pereira CS (2010) Novel biocompatible cholinium-based ionic liquids-toxicity and biodegradability. Green Chem 12(4):643–649. doi: 10.1039/b922247b CrossRefGoogle Scholar
  85. Pfruender H, Jones R, Weuster-Botz D (2006) Water immiscible ionic liquids as solvents for whole cell biocatalysis. J Biotechnol 124(1):182–190. doi: 10.1016/j.jbiotec.2005.12.004 PubMedCrossRefGoogle Scholar
  86. Pham TPT, Cho CW, Yun YS (2010) Environmental fate and toxicity of ionic liquids: a review. Water Res 44(2):352–372. doi: 10.1016/j.watres.2009.09.030 PubMedCrossRefGoogle Scholar
  87. Portillo MD, Saadeddin A (2015) Recent trends in ionic liquid (IL) tolerant enzymes and microorganisms for biomass conversion. Crit Rev Biotechnol 35(3):294–301. doi: 10.3109/07388551.2013.843069 CrossRefGoogle Scholar
  88. Putman M, van Veen HW, Konings WN (2000) Molecular properties of bacterial multidrug transporters. Microbiol Mol Biol Rev 64(4):672. doi: 10.1128/mmbr.64.4.672-693.2000 PubMedPubMedCentralCrossRefGoogle Scholar
  89. Quijano G, Couvert A, Amrane A (2010) Ionic liquids: applications and future trends in bioreactor technology. Bioresour Technol 101(23):8923–8930. doi: 10.1016/j.biortech.2010.06.161 PubMedCrossRefGoogle Scholar
  90. Ramos JL, Duque E, Gallegos MT, Godoy P, Ramos-Gonzalez MI, Rojas A, Teran W, Segura A (2002) Mechanisms of solvent tolerance in gram-negative bacteria. Annu Rev Microbiol 56:743–768. doi: 10.1146/annurev.micro.56.012302.161038 PubMedCrossRefGoogle Scholar
  91. Reddy AP, Simmons CW, Claypool J, Jabusch L, Burd H, Hadi MZ, Simmons BA, Singer SW, VanderGheynst JS (2012) Thermophilic enrichment of microbial communities in the presence of the ionic liquid 1-ethyl-3-methylimidazolium acetate. J Appl Microbiol 113(6):1362–1370. doi: 10.1111/jam.12002 PubMedCrossRefGoogle Scholar
  92. Reddy AP, Simmons CW, D’Haeseleer P, Khudyakov J, Burd H, Hadi M, Simmons BA, Singer SW, Thelen MP, VanderGheynst JS (2013) Discovery of microorganisms and enzymes involved in high-solids decomposition of rice straw using metagenomic analyses. PLoS One 8(10):12. doi: 10.1371/journal.pone.0077985 Google Scholar
  93. Romero A, Santos A, Tojo J, Rodriguez A (2008) Toxicity and biodegradability of imidazolium ionic liquids. J Hazard Mater 151(1):268–273. doi: 10.1016/j.jhazmat.2007.10.079 PubMedCrossRefGoogle Scholar
  94. Ruegg TL, Kim EM, Simmons BA, Keasling JD, Singer SW, Lee TS, Thelen MP (2014) An auto-inducible mechanism for ionic liquid resistance in microbial biofuel production. Nat Commun 5. doi: 10.1038/ncomms4490
  95. Ruiz HA, Rodriguez-Jasso RM, Fernandes BD, Vicente AA, Teixeira JA (2013) Hydrothermal processing, as an alternative for upgrading agriculture residues and marine biomass according to the biorefinery concept: a review. Renew Sust Energ Rev 21:35–51. doi: 10.1016/j.rser.2012.11.069 CrossRefGoogle Scholar
  96. Saha BC, Iten LB, Cotta MA, Wu YV (2005) Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Process Biochem 40(12):3693–3700. doi: 10.1016/j.procbio.2005.04.006 CrossRefGoogle Scholar
  97. Santos AG, Ribeiro BD, Alviano DS, Coelho MAZ (2014) Toxicity of ionic liquids toward microorganisms interesting to the food industry. RSC Adv 4(70):37157–37163. doi: 10.1039/c4ra05295a CrossRefGoogle Scholar
  98. Schell DJ, Farmer J, Newman M, McMillan JD (2003) Dilute-sulfuric acid pretreatment of corn stover in pilot-scale reactor—investigation of yields, kinetics, and enzymatic digestibilities of solids. Appl Biochem Biotechnol 105:69–85. doi: 10.1385/abab:105:1-3:69 PubMedCrossRefGoogle Scholar
  99. Segal L, Creely JJ, Martin AE Jr, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29(10):786–794. doi: 10.1177/004051755902901003 CrossRefGoogle Scholar
  100. Sendovski M, Nir N, Fishman A (2010) Bioproduction of 2-phenylethanol in a biphasic ionic liquid aqueous system. J Agric Food Chem 58(4):2260–2265. doi: 10.1021/jf903879x PubMedCrossRefGoogle Scholar
  101. Silveira MHL, Morais ARC, da Costa Lopes AM, Olekszyszen DN, Bogel-Łukasik R, Andreaus J, Pereira Ramos L (2015) Current pretreatment technologies for the development of cellulosic ethanol and biorefineries. ChemSusChem 8(20):3366–3390. doi: 10.1002/cssc.201500282 PubMedCrossRefGoogle Scholar
  102. Simmons BA, Loque D, Blanch HW (2008) Next-generation biomass feedstocks for biofuel production. Genome Biol 9(12):1Google Scholar
  103. Simmons CW, Reddy AP, VanderGheynst JS, Simmons BA, Singer SW (2014) Bacillus coagulans tolerance to 1-ethyl-3-methylimidazolium-based ionic liquids in aqueous and solid-state thermophilic culture. Biotechnol Prog 30(2):311–316. doi: 10.1002/btpr.1859 PubMedCrossRefGoogle Scholar
  104. Singer SW, Reddy AP, Gladden JM, Guo H, Hazen TC, Simmons BA, VanderGheynst JS (2011) Enrichment, isolation and characterization of fungi tolerant to 1-ethyl-3-methylimidazolium acetate. J Appl Microbiol 110(4):1023–1031. doi: 10.1111/j.1365-2672.2011.04959.x PubMedCrossRefGoogle Scholar
  105. Singh S, Simmons BA, Vogel KP (2009) Visualization of biomass solubilization and cellulose regeneration during ionic liquid pretreatment of switchgrass. Biotechnol Bioeng 104(1):68–75. doi: 10.1002/bit.22386 PubMedCrossRefGoogle Scholar
  106. Singh J, Suhag M, Dhaka A (2015) Augmented digestion of lignocellulose by steam explosion, acid and alkaline pretreatment methods: a review. Carbohydr Polym 117:624–631. doi: 10.1016/j.carbpol.2014.10.012 PubMedCrossRefGoogle Scholar
  107. Sitepu IR, Shi S, Simmons BA, Singer SW, Boundy-Mills K, Simmons CW (2014) Yeast tolerance to the ionic liquid 1-ethyl-3-methylimidazolium acetate. FEMS Yeast Res 14(8):1286–1294. doi: 10.1111/1567-1364.12224 PubMedCrossRefGoogle Scholar
  108. Sun N, Rahman M, Qin Y, Maxim ML, Rodriguez H, Rogers RD (2009) Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate. Green Chem 11(5):646–655. doi: 10.1039/b822702k CrossRefGoogle Scholar
  109. Tan SSY, MacFarlane DR, Upfal J, Edye LA, Doherty WOS, Patti AF, Pringle JM, Scott JL (2009) Extraction of lignin from lignocellulose at atmospheric pressure using alkylbenzenesulfonate ionic liquid. Green Chem 11(3):339–345. doi: 10.1039/b815310h CrossRefGoogle Scholar
  110. Thygesen A, Oddershede J, Lilholt H, Thomsen AB, Stahl K (2005) On the determination of crystallinity and cellulose content in plant fibres. Cellulose 12(6):563–576. doi: 10.1007/s10570-005-9001-8 CrossRefGoogle Scholar
  111. Trinh LTP, Lee YJ, Lee J-W, Lee H-J (2015) Characterization of ionic liquid pretreatment and the bioconversion of pretreated mixed softwood biomass. Biomass Bioenergy 81:1–8. doi: 10.1016/j.biombioe.2015.05.005 CrossRefGoogle Scholar
  112. Vaas LAI, Sikorski J, Michael V, Goker M, Klenk HP (2012) Visualization and curve-parameter estimation strategies for efficient exploration of phenotype microarray kinetics. PLoS One 7(4). doi: 10.1371/journal.pone.0034846
  113. van Rantwijk F, Lau RM, Sheldon RA (2003) Biocatalytic transformations in ionic liquids. Trends Biotechnol 21(3):131–138. doi: 10.1016/s0167-7799(03)00008-8 PubMedCrossRefGoogle Scholar
  114. Yang Z, Pan WB (2005) Ionic liquids: green solvents for nonaqueous biocatalysis. Enzym Microb Technol 37(1):19–28. doi: 10.1016/j.enzmictec.2005.02.014 CrossRefGoogle Scholar
  115. Yang B, Wyman CE (2008) Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels Bioprod Biorefining-Biofpr 2(1):26–40. doi: 10.1002/bbb.49 CrossRefGoogle Scholar
  116. Yu CW, Reddy AP, Simmons CW, Simmons BA, Singer SW, VanderGheynst JS (2015) Preservation of microbial communities enriched on lignocellulose under thermophilic and high-solid conditions. Biotechnol Biofuels 8. doi: 10.1186/s13068-015-0392-y
  117. Zakrzewska ME, Bogel-Lukasik E, Bogel-Lukasik R (2010) Solubility of carbohydrates in ionic liquids. Energy Fuel 24:737–745. doi: 10.1021/ef901215m CrossRefGoogle Scholar
  118. Zavrel M, Bross D, Funke M, Buchs J, Spiess AC (2009) High-throughput screening for ionic liquids dissolving (ligno-)cellulose. Bioresour Technol 100(9):2580–2587. doi: 10.1016/j.biortech.2008.11.052 PubMedCrossRefGoogle Scholar
  119. Zhang YHP, Ding SY, Mielenz JR, Cui JB, Elander RT, Laser M, Himmel ME, McMillan JR, Lynd LR (2007) Fractionating recalcitrant lignocellulose at modest reaction conditions. Biotechnol Bioeng 97(2):214–223. doi: 10.1002/bit.21386 PubMedCrossRefGoogle Scholar
  120. Zhang K, Pei Z, Wang D (2016) Organic solvent pretreatment of lignocellulosic biomass for biofuels and biochemicals: a review. Bioresour Technol 199:21–33. doi: 10.1016/j.biortech.2015.08.102 PubMedCrossRefGoogle Scholar
  121. Zhao H, Jones CIL, Baker GA, Xia S, Olubajo O, Person VN (2009a) Regenerating cellulose from ionic liquids for an accelerated enzymatic hydrolysis. J Biotechnol 139(1):47–54. doi: 10.1016/j.jbiotec.2008.08.009 PubMedCrossRefGoogle Scholar
  122. Zhao XB, Cheng KK, Liu DH (2009b) Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Appl Microbiol Biotechnol 82(5):815–827. doi: 10.1007/s00253-009-1883-1 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Chaowei Yu
    • 1
  • Blake A. Simmons
    • 2
    • 3
  • Steven W. Singer
    • 2
    • 3
  • Michael P. Thelen
    • 2
    • 4
  • Jean S. VanderGheynst
    • 1
    • 2
    Email author
  1. 1.Department of Biological and Agricultural EngineeringUniversity of CaliforniaDavisUSA
  2. 2.Joint BioEnergy InstituteEmeryvilleUSA
  3. 3.Biological Systems and Engineering DivisionLawrence Berkeley National LaboratoryBerkeleyUSA
  4. 4.Biosciences DivisionLawrence Livermore National LaboratoryLivermoreUSA

Personalised recommendations