Applied Microbiology and Biotechnology

, Volume 101, Issue 4, pp 1605–1614 | Cite as

Lactobacillus plantarum HAC01 regulates gut microbiota and adipose tissue accumulation in a diet-induced obesity murine model

  • Soyoung Park
  • Yosep Ji
  • Hoe-Yune Jung
  • Hyunjoon Park
  • Jihee Kang
  • Sang-Haeng Choi
  • Heuynkil Shin
  • Chang-Kee Hyun
  • Kyong-Tai Kim
  • Wilhelm H. Holzapfel
Applied microbial and cell physiology

Abstract

The functional features of Lactobacillus plantarum HAC01 (HAC01), isolated from fermented Korean kimchi, were studied with regard to the fat mass, immunometabolic biomarkers and dysbiosis in a diet-induced obesity (DIO) murine model. L. rhamnosus GG (LGG) served as reference strain and a PBS-treated group as control. The administration of L. plantarum HAC01 resulted in reduction of the mesenteric adipose depot, the conjunctive tissue closely associated with the gastrointestinal tract, where lipid oxidative gene expression was upregulated compared to the control group. Metagenome analysis of intestinal microbiota showed that both strains HAC01 and LGG influenced specific bacterial families such as the Lachnospiraceae and Ruminococcaceae rather than the phyla Firmicutes and Bacteroidetes as a whole. The relative abundance of the Lachnospiraceae (phylum Firmicutes) was significantly higher in both LAB-treated groups than in the control. Comparing the impact of the two Lactobacillus strains on microbial composition in the gut also suggests strain-specific effects. The study emphasises the need for deeper studies into functional specificity of a probiotic organism at the strain level. Alleviation of obesity-associated dysbiosis by modulation of the gut microbiota appears to be associated with “indicator” bacterial taxa such as the family Lachnospiraceae. This may provide further insight into mechanisms basic to the mode of probiotic action against obesity and associated dysbiosis.

Keywords

Lactobacillus plantarum Lactobacillus rhamnosus GG Mesenteric adipose tissue Diet-induced obesity Dysbiosis Gut microbiota 

Notes

Acknowledgements

This research was supported by the Korea Institute of Planning and Evaluation Technology in the Ministry of Food, Agriculture, Forestry and Fisheries (IPET), as part of the research project “Modulation of the microbiome with a concomitant anti-obesity effect by Kimchi originated probiotic feeding” (911053-1). We also gratefully acknowledge support from the Bio- and Medical Technology Development Program of the National Research Foundation (NRF) funded by the Ministry of Science, ICT and Future Planning (2016M3A9A5923160).

Compliance with ethical standards

All applicable international, national and institutional guidelines for the care and use of animals were followed. This article does not contain any studies with human participants performed by any of the authors.

Ethical approval

All animal experiments and protocols were approved by the Committee on the Ethics of Animal Experiments of Handong Global University and were in agreement with the guidelines set forth by the Korean Association for Laboratory Animals.

Conflict of interest

The authors declare that they have no conflict of interest.

Funding

WH was funded by Ministry of Food, Agriculture, Forestry and Fisheries (IPET), as part of the research project “Modulation of the microbiome with a concomitant anti-obesity effect by Kimchi originated probiotic feeding” (911053-1).

Supplementary material

253_2016_7953_MOESM1_ESM.pdf (168 kb)
ESM 1 (PDF 168 kb)

References

  1. Bäckhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, Semenkovich CF, Gordon JI (2004) The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A 101(44):15718–15723. doi: 10.1073/pnas.0407076101 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Caricilli AM, Picardi PK, de Abreu LL, Ueno M, Prada PO, Ropelle ER, Hirabara SM, Castoldi Â, Vieira P, Camara NO (2011) Gut microbiota is a key modulator of insulin resistance in TLR 2 knockout mice. PLoS Biol 9(12):e1001212CrossRefPubMedPubMedCentralGoogle Scholar
  3. Carroll IM, Ringel-Kulka T, Siddle JP, Ringel Y (2012) Alterations in composition and diversity of the intestinal microbiota in patients with diarrhea-predominant irritable bowel syndrome. Neurogastroenterol & Motility 24(6):521–e248CrossRefGoogle Scholar
  4. Consortium HMP (2012) Structure, function and diversity of the healthy human microbiome. Nature 486(7402):207–214CrossRefGoogle Scholar
  5. Cusi K (2010) The role of adipose tissue and lipotoxicity in the pathogenesis of type 2 diabetes. Curr Diabetes Rep 10(4):306–315CrossRefGoogle Scholar
  6. D’Argenio V, Salvatore F (2015) The role of the gut microbiome in the healthy adult status. Clin Chim Acta 451:97–102CrossRefPubMedGoogle Scholar
  7. Gaspar JM, Thomas WK (2015) FlowClus: efficiently filtering and denoising pyrosequenced amplicons. BMC Bioinformatics 16:105. doi: 10.1186/s12859-015-0532-1 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Gosalbes MJ, Durban A, Pignatelli M, Abellan JJ, Jimenez-Hernandez N, Perez-Cobas AE, Latorre A, Moya A (2011) Metatranscriptomic approach to analyze the functional human gut microbiota. PLoS One 6(3):e17447. doi: 10.1371/journal.pone.0017447 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Hemarajata P, Versalovic J (2012) Effects of probiotics on gut microbiota: mechanisms of intestinal immunomodulation and neuromodulation. Therap Adv Gastroenterol 6(1):39–51. doi: 10.1177/1756283X12459294 CrossRefGoogle Scholar
  10. Holzapfel WH, Wood BJ (2014) Lactic acid bacteria: biodiversity and taxonomy. John Wiley & Sons, ChichesterCrossRefGoogle Scholar
  11. Hsiao EY, McBride SW, Hsien S, Sharon G, Hyde ER, McCue T, Codelli JA, Chow J, Reisman SE, Petrosino JF (2013) Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 155(7):1451–1463CrossRefPubMedPubMedCentralGoogle Scholar
  12. Ji YS, Kim HN, Park HJ, Lee JE, Yeo SY, Yang JS, Park SY, Yoon HS, Cho GS, Franz CM, Bomba A, Shin HK, Holzapfel WH (2012) Modulation of the murine microbiome with a concomitant anti-obesity effect by Lactobacillus rhamnosus GG and Lactobacillus sakei NR28. Benef Microbes 3(1):13–22. doi: 10.3920/BM2011.0046 CrossRefPubMedGoogle Scholar
  13. Kadooka Y, Sato M, Imaizumi K, Ogawa A, Ikuyama K, Akai Y, Okano M, Kagoshima M, Tsuchida T (2010) Regulation of abdominal adiposity by probiotics (Lactobacillus gasseri SBT2055) in adults with obese tendencies in a randomized controlled trial. Eur J Clin Nutr 64(6):636–643. doi: 10.1038/ejcn.2010.19 CrossRefPubMedGoogle Scholar
  14. Kim B, Park K-Y, Ji Y, Park S, Holzapfel W, Hyun C-K (2016) Protective effects of Lactobacillus rhamnosus GG against dyslipidemia in high-fat diet-induced obese mice. Biochem Biophys Res Comm 473(2):530–536CrossRefPubMedGoogle Scholar
  15. Kim S-W, Park K-Y, Kim B, Kim E, Hyun C-K (2013) Lactobacillus rhamnosus GG improves insulin sensitivity and reduces adiposity in high-fat diet-fed mice through enhancement of adiponectin production. Biochem Biophys Res Comm 431(2):258–263CrossRefPubMedGoogle Scholar
  16. Kimura I, Ozawa K, Inoue D, Imamura T, Kimura K, Maeda T, Terasawa K, Kashihara D, Hirano K, Tani T, Takahashi T, Miyauchi S, Shioi G, Inoue H, Tsujimoto G (2013) The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat Commun 4:1829. doi: 10.1038/ncomms2852 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Kwok L, Guo Z, Zhang J, Wang L, Qiao J, Hou Q, Zheng Y, Zhang H (2015) The impact of oral consumption of Lactobacillus plantarum P-8 on faecal bacteria revealed by pyrosequencing. Benef Microbes 6(4):405–413CrossRefPubMedGoogle Scholar
  18. Kwon H-K, So J-S, Lee C-G, Sahoo A, Yi H-J, Park J-N, S-y L, Hwang K-C, Jun C-D, Chun J-S (2008) Foxp3 induces IL-4 gene silencing by affecting nuclear translocation of NFκB and chromatin structure. Mol Immunol 45(11):3205–3212CrossRefPubMedGoogle Scholar
  19. Li Z, Yang S, Lin H, Huang J, Watkins PA, Moser AB, DeSimone C, Xy S, Diehl AM (2003) Probiotics and antibodies to TNF inhibit inflammatory activity and improve nonalcoholic fatty liver disease. Hepatol 37(2):343–350CrossRefGoogle Scholar
  20. Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R (2012) Diversity, stability and resilience of the human gut microbiota. Nature 489(7415):220–230CrossRefPubMedPubMedCentralGoogle Scholar
  21. Maghbooli Z, Hossein-nezhad A (2015) Transcriptome and molecular endocrinology aspects of epicardial adipose tissue in cardiovascular diseases: a systematic review and meta-analysis of observational studies. Biomed Res Int 2015:926567 12 pages, http://dx.doi.org/10.1155/2015/926567CrossRefPubMedPubMedCentralGoogle Scholar
  22. Masood MI, Qadir MI, Shirazi JH, Khan IU (2011) Beneficial effects of lactic acid bacteria on human beings. Crit Rev Microbiol 37(1):91–98CrossRefPubMedGoogle Scholar
  23. Miyoshi M, Ogawa A, Higurashi S, Kadooka Y (2014) Anti-obesity effect of Lactobacillus gasseri SBT2055 accompanied by inhibition of pro-inflammatory gene expression in the visceral adipose tissue in diet-induced obese mice. Europ J Nutr 53(2):599–606CrossRefGoogle Scholar
  24. O’Hara AM, Shanahan F (2006) The gut flora as a forgotten organ. EMBO Rep 7(7):688–693. doi: 10.1038/sj.embor.7400731 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Oda N, Imamura S, Fujita T, Uchida Y, Inagaki K, Kakizawa H, Hayakawa N, Suzuki A, Takeda J, Horikawa Y (2008) The ratio of leptin to adiponectin can be used as an index of insulin resistance. Metabolism 57(2):268–273CrossRefPubMedGoogle Scholar
  26. Park S, Ji Y, Park H, Lee K, Park H, Beck BR, Shin H, Holzapfel WH (2016) Evaluation of functional properties of lactobacilli isolated from Korean white kimchi. Food Control 69:5–12. doi: 10.1016/j.foodcont.2016.04.037 CrossRefGoogle Scholar
  27. Parvez S, Malik K, Ah Kang S, Kim HY (2006) Probiotics and their fermented food products are beneficial for health. J Appl Microbiol 100(6):1171–1185CrossRefPubMedGoogle Scholar
  28. Perez-Cobas AE, Gosalbes MJ, Friedrichs A, Knecht H, Artacho A, Eismann K, Otto W, Rojo D, Bargiela R, von Bergen M, Neulinger SC, Daumer C, Heinsen FA, Latorre A, Barbas C, Seifert J, dos Santos VM, Ott SJ, Ferrer M, Moya A (2013) Gut microbiota disturbance during antibiotic therapy: a multi-omic approach. Gut 62(11):1591–1601. doi: 10.1136/gutjnl-2012-303184 CrossRefPubMedGoogle Scholar
  29. Ravussin Y, Koren O, Spor A, LeDuc C, Gutman R, Stombaugh J, Knight R, Ley RE, Leibel RL (2012) Responses of gut microbiota to diet composition and weight loss in lean and obese mice. Obesity (Silver Spring) 20(4):738–747. doi: 10.1038/oby.2011.111 CrossRefGoogle Scholar
  30. Richardson VR, Smith KA, Carter AM (2013) Adipose tissue inflammation: feeding the development of type 2 diabetes mellitus. Immunobiol 218(12):1497–1504CrossRefGoogle Scholar
  31. Ritze Y, Bárdos G, Claus A, Ehrmann V, Bergheim I, Schwiertz A, Bischoff SC (2014) Lactobacillus rhamnosus GG protects against non-alcoholic fatty liver disease in mice. PLoS One 9(1):e80169CrossRefPubMedPubMedCentralGoogle Scholar
  32. Roos S, Dicksved J, Tarasco V, Locatelli E, Ricceri F, Grandin U, Savino F (2013) 454 pyrosequencing analysis on faecal samples from a randomized DBPC trial of colicky infants treated with Lactobacillus reuteri DSM 17938. PLoS One 8(2):e56710CrossRefPubMedPubMedCentralGoogle Scholar
  33. Sanz Y, Rastmanesh R, Agostonic C (2013) Understanding the role of gut microbes and probiotics in obesity: how far are we? Pharmacol Res 69(1):144–155CrossRefPubMedGoogle Scholar
  34. Sethi JK, Vidal-Puig AJ (2007) Thematic review series: adipocyte biology. Adipose tissue function and plasticity orchestrate nutritional adaptation. J Lipid Res 48(6):1253–1262CrossRefPubMedPubMedCentralGoogle Scholar
  35. Spor A, Koren O, Ley R (2011) Unravelling the effects of the environment and host genotype on the gut microbiome. Nature Rev Microbiol 9(4):279–290CrossRefGoogle Scholar
  36. Wang J, Tang H, Zhang C, Zhao Y, Derrien M, Rocher E, van- Hylckama Vlieg JE, Strissel K, Zhao L, Obin M, Shen J (2015) Modulation of gut microbiota during probiotic-mediated attenuation of metabolic syndrome in high fat diet-fed mice. ISME J 9(1):1–15. doi: 10.1038/ismej.2014.99 CrossRefPubMedGoogle Scholar
  37. Xu H (2013) Obesity and metabolic inflammation. Drug Discovery Today: Disease Mechanisms 10(1):e21–e25CrossRefGoogle Scholar
  38. Zeng J, Li YQ, Zuo XL, Zhen YB, Yang J, Liu CH (2008) Clinical trial: effect of active lactic acid bacteria on mucosal barrier function in patients with diarrhoea-predominant irritable bowel syndrome. Alim Pharmacol Therap 28(8):994–1002Google Scholar
  39. Zhang C, Zhang M, Pang X, Zhao Y, Wang L, Zhao L (2012) Structural resilience of the gut microbiota in adult mice under high-fat dietary perturbations. ISME J 6(10):1848–1857. doi: 10.1038/ismej.2012.27 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Soyoung Park
    • 1
    • 2
  • Yosep Ji
    • 1
  • Hoe-Yune Jung
    • 2
    • 3
  • Hyunjoon Park
    • 1
  • Jihee Kang
    • 4
  • Sang-Haeng Choi
    • 4
  • Heuynkil Shin
    • 5
  • Chang-Kee Hyun
    • 5
  • Kyong-Tai Kim
    • 3
  • Wilhelm H. Holzapfel
    • 1
  1. 1.Advanced Green Energy and Environment Institute (AGEE)Handong Global UniversityPohangSouth Korea
  2. 2.R&D CenterPohangSouth Korea
  3. 3.Department of Life ScienceDivision of Integrative Biosciences and Biotechnology, POSTECHPohangSouth Korea
  4. 4.AtoGen Co. Ltd.DaejeonSouth Korea
  5. 5.School of Life SciencesHandong Global UniversityPohangSouth Korea

Personalised recommendations