Applied Microbiology and Biotechnology

, Volume 101, Issue 4, pp 1499–1507 | Cite as

Bioinformatic analysis of fold-type III PLP-dependent enzymes discovers multimeric racemases

  • Anders M. Knight
  • Alberto Nobili
  • Tom van den Bergh
  • Maika Genz
  • Henk-Jan Joosten
  • Dirk Albrecht
  • Katharina Riedel
  • Ioannis V. Pavlidis
  • Uwe T. Bornscheuer
Biotechnologically relevant enzymes and proteins
  • 493 Downloads

Abstract

Pyridoxal-5′-phosphate (PLP)-dependent enzymes are ubiquitous in nature and catalyze a variety of important metabolic reactions. The fold-type III PLP-dependent enzyme family is primarily comprised of decarboxylases and alanine racemases. In the development of a multiple structural alignment database (3DM) for the enzyme family, a large subset of 5666 uncharacterized proteins with high structural, but low sequence similarity to alanine racemase and decarboxylases was found. Compared to these two classes of enzymes, the protein sequences being the object of this study completely lack the C-terminal domain, which has been reported important for the formation of the dimer interface in other fold-type III enzymes. The 5666 sequences cluster around four protein templates, which also share little sequence identity to each other. In this work, these four template proteins were solubly expressed in Escherichia coli, purified, and their substrate profiles were evaluated by HPLC analysis for racemase activity using a broader range of amino acids. They were found active only against alanine or serine, where they exhibited Michaelis constants within the range of typical bacterial alanine racemases, but with significantly lower turnover numbers. As the already described racemases were proposed to be active and appeared to be monomers as judged from their crystal structures, we also investigated this aspect for the four new enzymes. Here, size exclusion chromatography indicated the presence of oligomeric states of the enzymes and a native-PAGE in-gel assay showed that the racemase activity was present only in an oligomeric state but not as monomer. This suggests the likelihood of a different behavior of these enzymes in solution compared to the one observed in crystalline form.

Keywords

Decarboxylase PLP-dependent enzymes Protein-function analysis Racemase 

Supplementary material

253_2016_7940_MOESM1_ESM.pdf (791 kb)
ESM 1(PDF 790 kb)

References

  1. Anthony KG, Strych U, Yeung KR, Shoen CS, Perez O, Krause KL, Cynamon MH, Aristoff PA, Koski RA (2011) New classes of alanine racemase inhibitors identified by high-throughput screening show antimicrobial activity against Mycobacterium tuberculosis. PLoS One 6(5):e20374. doi:10.1371/journal.pone.0020374 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Azam MA, Jayaram U (2016) Inhibitors of alanine racemase enzyme: a review. J Enzyme Inhib Med Chem 31(4):517–526. doi:10.3109/14756366.2015.1050010 PubMedGoogle Scholar
  3. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The Protein Data Bank. Nucleic Acids Res 28(1):235–242CrossRefPubMedPubMedCentralGoogle Scholar
  4. Brückner H, Wittner R, Haasmann S, Langer M, Westhauser T (1994) Liquid chromatographic determination of D- and L-amino acids by derivatization with o-phthaldialdehyde and chiral thiols: applications with reference to biosciences. J Chromatogr A 666:259–273CrossRefGoogle Scholar
  5. Eliot AC, Kirsch JF (2004) Pyridoxal phosphate enzymes: mechanistic, structural, and evolutionary considerations. Ann Rev Biochem 73:383–415. doi:10.1146/annurev.biochem.73.011303.074021 CrossRefPubMedGoogle Scholar
  6. Espaillat A, Carrasco-López C, Bernardo-García N, Pietrosemoli N, Otero LH, Álvarez L, de Pedro MA, Pazos F, Davis BM, Waldor MK, Hermoso JA, Cava F (2014) Structural basis for the broad specificity of a new family of amino-acid racemases. Acta Cryst Sect D, Biol Cryst 70(Pt 1):79–90. doi:10.1107/S1399004713024838 CrossRefGoogle Scholar
  7. Eswaramoorthy S, Gerchman S, Graziano V, Kycia H, Studier FW (2003) Structure of a yeast hypothetical protein selected by a structural genomics approach. Acta Cryst Sect D, Biol Cryst 59:127–135CrossRefGoogle Scholar
  8. Galkin A, Kulakova L, Yamamoto H, Tanizawa K, Tanaka H, Esaki N, Soda K (1997) Conversion of α-keto acids to D-amino acids by coupling of four enzyme reactions. J Ferment Bioeng 83(3):299–300CrossRefGoogle Scholar
  9. Henke E, Pleiss J, Bornscheuer UT (2002) Activity of lipases and esterases towards tertiary alcohols: insights into structure-function relationships. Angew Chem Int Ed 41(17):3211–3213. doi:10.1002/1521-3773(20020902)41:17<3211::AID-ANIE3211>3.0.CO;2-U CrossRefGoogle Scholar
  10. Höhne M, Schätzle S, Jochens H, Robins K, Bornscheuer UT (2010) Rational assignment of key motifs for function guides in silico enzyme identification. Nature Chem Biol 6(11):807–813. doi:10.1038/nchembio.447 CrossRefGoogle Scholar
  11. Holt A, Palcic MM (2006) A peroxidase-coupled continuous absorbance plate-reader assay for flavin monoamine oxidases, copper-containing amine oxidases and related enzymes. Nat Protocols 1(5):2498–2505. doi:10.1038/nprot.2006.402 CrossRefPubMedGoogle Scholar
  12. Inagaki K, Tanizawa K, Badet B, Walsh CT, Tanaka H, Soda K (1986) Thermostable alanine racemase from Bacillus stearothermophilus: molecular cloning of the gene, enzyme purification, and characterization. Biochemistry 25(11):3268–3274. doi:10.1021/bi00359a028 CrossRefPubMedGoogle Scholar
  13. Ito T, Iimori J, Takayama S, Moriyama A, Yamauchi A, Hemmi H, Yoshimura T (2013) Conserved pyridoxal protein that regulates Ile and Val metabolism. J Bacteriol 195(24):5439–5449. doi:10.1128/JB.00593-13 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Jackson LK, Baldwin J, Akella R, Goldsmith EJ, Phillips MA (2004) Multiple active site conformations revealed by distant site mutation in ornithine decarboxylase. Biochemistry 43(41):12990–12999. doi:10.1021/bi048933l CrossRefPubMedGoogle Scholar
  15. Jackson LK, Brooks HB, Osterman AL, Goldsmith EJ, Phillips MA (2000) Altering the reaction specificity of eukaryotic ornithine decarboxylase. Biochemistry 39(37):11247–11257CrossRefPubMedGoogle Scholar
  16. Joosten H-J (2007) 3DM: from data to medicine., PhD thesis, Wageningen UniversityGoogle Scholar
  17. Ju J, Xu S, Furukawa Y, Zhang Y, Misono H, Minamino T, Namba K, Zhao B, Ohnishi K (2011) Correlation between catalytic activity and monomer-dimer equilibrium of bacterial alanine racemases. J Biochem 149(1):83–89. doi:10.1093/jb/mvq120 CrossRefPubMedGoogle Scholar
  18. Kuipers R, Van Den Bergh T, Joosten HJ, Lekanne dit Deprez RH, Mannens MMAM, Schaap PJ (2010a) Novel tools for extraction and validation of disease-related mutations applied to fabry disease. Hum Mutat 31(9):1026–1032. doi:10.1002/humu.21317 CrossRefPubMedGoogle Scholar
  19. Kuipers RK, Joosten H-J, van Berkel WJH, Leferink NGH, Rooijen E, Ittmann E, van Zimmeren F, Jochens H, Bornscheuer UT, Vriend G, dos Santos VAPM, Schaap PJ (2010b) 3DM: systematic analysis of heterogeneous superfamily data to discover protein functionalities. Proteins 78(9):2101–2113. doi:10.1002/prot.22725 PubMedGoogle Scholar
  20. Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol. doi:10.1093/molbev/msw054 PubMedCentralGoogle Scholar
  21. Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, USAGoogle Scholar
  22. Percudani R, Peracchi A (2003) A genomic overview of pyridoxal-phosphate-dependent enzymes. EMBO Rep 4(9):850–854. doi:10.1038/sj.embor.embor914 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Romero-Romero S, Costas M, Rodriguez-Romero A, Fernandez-Velasco DA (2015) Reversibility and two state behaviour in the thermal unfolding of oligomeric TIM barrel proteins. Phys Chem Chem Phys 17(32):20699–20714. doi:10.1039/C5CP01599E CrossRefPubMedGoogle Scholar
  24. Rzhetsky A, Nei M (1992) A simple method for estimating and testing minimum-evolution trees. Mol Biol Evol 9(5):945Google Scholar
  25. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425PubMedGoogle Scholar
  26. Schneider G, Käck H, Lindqvist Y (2000) The manifold of vitamin B6 dependent enzymes. Structure 8(1):1–6. doi:10.1016/S0969-2126(00)00085-X CrossRefGoogle Scholar
  27. Shaw JP, Petsko GA, Ringe D (1997) Determination of the structure of alanine racemase from Bacillus stearothermophilus at 1.9-Å resolution. Biochemistry 36(6):1329–1342. doi:10.1021/bi961856c CrossRefPubMedGoogle Scholar
  28. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J, Thompson JD, Higgins DG (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7(1):n/a–n/a. doi:10.1038/msb.2011.75 Google Scholar
  29. Soda K, Oikawa T, Yokoigawa K (2001) One-pot chemo-enzymatic enantiomerization of racemates. J Mol Catal B Enzym 11:149–153CrossRefGoogle Scholar
  30. Steffen-Munsberg F, Vickers C, Kohls H, Land H, Mallin H, Nobili A, Skalden L, van den Bergh T, Joosten H-J, Berglund P, Höhne M, Bornscheuer UT (2015) Bioinformatic analysis of a PLP-dependent enzyme superfamily suitable for biocatalytic applications. Biotechnol Adv 33:566–604CrossRefPubMedGoogle Scholar
  31. Steffen-Munsberg F, Vickers C, Thontowi A, Schätzle S, Tumlirsch T, Svedendahl Humble M, Land H, Berglund P, Bornscheuer UT, Höhne M (2013) Connecting unexplored protein crystal structures to enzymatic function. ChemCatChem 5:150–153CrossRefGoogle Scholar
  32. Sun S, Toney MD (1999) Evidence for a two-base mechanism involving tyrosine-265 from arginine-219 mutants of alanine racemase. Biochemistry 38(13):4058–4065. doi:10.1021/bi982924t CrossRefPubMedGoogle Scholar
  33. Tatusova T, Ciufo S, Fedorov B, O’Neill K, Tolstoy I (2014) RefSeq microbial genomes database: new representation and annotation strategy. Nucleic Acids Res 42(D1):D553–D559. doi:10.1093/nar/gkt1274 CrossRefPubMedGoogle Scholar
  34. Wu H-M, Kuan Y-C, Chu C-H, Hsu W-H, Wang W-C (2012) Crystal structures of lysine-preferred racemases, the non-antibiotic selectable markers for transgenic plants. PLoS One 7(10):e48301. doi:10.1371/journal.pone.0048301 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Zuckerkandl E, Pauling L (1965) Evolutionary divergence and convergence in proteins. In: Bryson V, Vogel HJ (eds) Evolving Genes and Proteins. Academic Press, New York, pp. 97–166CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Anders M. Knight
    • 1
    • 2
  • Alberto Nobili
    • 1
    • 3
    • 4
  • Tom van den Bergh
    • 5
  • Maika Genz
    • 1
  • Henk-Jan Joosten
    • 5
  • Dirk Albrecht
    • 6
  • Katharina Riedel
    • 6
  • Ioannis V. Pavlidis
    • 1
    • 7
  • Uwe T. Bornscheuer
    • 1
  1. 1.Institute of Biochemistry, Department of Biotechnology and Enzyme CatalysisGreifswald UniversityGreifswaldGermany
  2. 2.Division of Biology and BioengineeringCalifornia Institute of TechnologyPasadenaUSA
  3. 3.Department of Cancer Immunology and VirologyDana-Farber Cancer InstituteBostonUSA
  4. 4.Department of Microbiology and ImmunobiologyHarvard Medical SchoolBostonUSA
  5. 5.Bio-ProdictNijmegenthe Netherlands
  6. 6.Institute for Microbiology, Department of Microbial Physiology and Molecular BiologyGreifswald UniversityGreifswaldGermany
  7. 7.Department of BiochemistryUniversity of KasselKasselGermany

Personalised recommendations