Applied Microbiology and Biotechnology

, Volume 101, Issue 4, pp 1521–1534 | Cite as

The signaling protein MucG negatively affects the production and the molecular mass of alginate in Azotobacter vinelandii

  • Carlos Leonel Ahumada-Manuel
  • Josefina Guzmán
  • Carlos Peña
  • Elva Quiroz-Rocha
  • Guadalupe Espín
  • Cinthia Núñez
Applied genetics and molecular biotechnology

Abstract

Azotobacter vinelandii is a soil bacterium that produces the polysaccharide alginate. In this work, we identified a miniTn5 mutant, named GG9, which showed increased alginate production of higher molecular mass, and increased expression of the alginate biosynthetic genes algD and alg8 when compared to its parental strain. The miniTn5 was inserted within ORF Avin07920 encoding a hypothetical protein. Avin07910, located immediately downstream and predicted to form an operon with Avin07920, encodes an inner membrane multi-domain signaling protein here named mucG. Insertional inactivation of mucG resulted in a phenotype of increased alginate production of higher molecular mass similar to that of mutant GG9. The MucG protein contains a periplasmic and putative HAMP and PAS domains, which are linked to GGDEF and EAL domains. The last two domains are potentially involved in the synthesis and degradation, respectively, of bis-(3′-5′)-cyclic dimeric GMP (c-di-GMP), a secondary messenger that has been reported to be essential for alginate production. Therefore, we hypothesized that the negative effect of MucG on the production of this polymer could be explained by the putative phosphodiesterase activity of the EAL domain. Indeed, we found that alanine replacement mutagenesis of the MucG EAL motif or deletion of the entire EAL domain resulted in increased alginate production of higher molecular mass similar to the GG9 and mucG mutants. To our knowledge, this is the first reported protein that simultaneous affects the production of alginate and its molecular mass.

Keywords

Azotobacter Alginate Molecular mass c-di-GMP 

Supplementary material

253_2016_7931_MOESM1_ESM.pdf (284 kb)
ESM 1(PDF 283 kb)

References

  1. Alexeyev MF, Shokolenko IN, Croughan TP (1995) Improved antibiotic-resistance gene cassettes and omega elements for Escherichia coli vector construction and in vitro deletion/insertion mutagenesis. Gene 160:63–67CrossRefPubMedGoogle Scholar
  2. Aravind L, Ponting CP (1999) The cytoplasmic helical linker domain of receptor histidine kinase and methyl-accepting proteins is common to many prokaryotic signalling proteins. FEMS Microbiol Lett 176:111–116CrossRefPubMedGoogle Scholar
  3. Bali A, Blanco G, Hill S, Kennedy C (1992) Excretion of ammonium by a nifL mutant of Azotobacter vinelandii fixing nitrogen. Appl Environ Microbiol 58:1711–1718PubMedPubMedCentralGoogle Scholar
  4. Barry T, Geary S, Hannify S, MacGearailt C, Shalloo M, Heery D, Gannon F, Powell R (1992) Rapid mini-preparations of total RNA from bacteria. Nucleic Acids Res 20:4940CrossRefPubMedPubMedCentralGoogle Scholar
  5. Becker DF, Zhu W, Moxley MA (2011) Flavin redox switching of protein functions. Antioxid Redox Signal 14:1079–1091CrossRefPubMedPubMedCentralGoogle Scholar
  6. Campos M, Martinez-Salazar JM, Lloret L, Moreno S, Núñez C, Espín G, Soberon-Chávez G (1996) Characterization of the gene coding for GDP-mannose dehydrogenase (algD) from Azotobacter vinelandii. J Bacteriol 178:1793–1799CrossRefPubMedPubMedCentralGoogle Scholar
  7. Castillo T, Galindo E, Peña CF (2013) The acetylation degree of alginates in Azotobacter vinelandii ATCC9046 is determined by dissolved oxygen and specific growth rate: studies in glucose-limited chemostat cultivations. J Ind Microbiol Biotechnol 40:715–723CrossRefPubMedGoogle Scholar
  8. Cheetman NWH, Punruckvong A (1985) An HPLC method for the determination of acetyland pyruvyl groups in polysaccharides. Carbohydr Polym:399–406Google Scholar
  9. Clementi F (1997) Alginate production by Azotobacter vinelandii. Crit Rev Biotechnol 17:327–361CrossRefPubMedGoogle Scholar
  10. Cocotl-Yáñez M, Moreno S, Encarnación S, López-Pliego L, Castañeda M, Espín G (2014) A small heat-shock protein (Hsp20) regulated by RpoS is essential for cyst desiccation resistance in Azotobacter vinelandii. Microbiology 160:479–487CrossRefPubMedGoogle Scholar
  11. Díaz-Barrera A, Soto E, Altamirano C (2012) Alginate production and alg8 gene expression by Azotobacter vinelandii in continuous cultures. J Ind Microbiol Biotechnol 39:613–621CrossRefPubMedGoogle Scholar
  12. Ertesvåg H, Erlien F, Skjåk-Braek G, Rehm BH, Valla S (1998) Biochemical properties and substrate specificities of a recombinantly produced Azotobacter vinelandii alginate lyase. J Bacteriol 180:3779–3784PubMedPubMedCentralGoogle Scholar
  13. Fellay R, Frey J, Krisch H (1987) Interposon mutagenesis of soil and water bacteria: a family of DNA fragments designed for in vitro insertional mutagenesis of Gram-negative bacteria. Gene 52:147–154CrossRefPubMedGoogle Scholar
  14. Finn RD, Mistry J, Schuster-Böckler B, Griffiths-Jones S, Hollich V, Lassmann T, Moxon S, Marshall M, Khanna A, Durbin R, Eddy SR, Sonnhammer EL, Bateman A (2006) Pfam: clans, web tools and services. Nucleic Acids Res 34:D247–D251CrossRefPubMedGoogle Scholar
  15. Flores C, Díaz-Barrera A, Martínez F, Galindo E, Peña C (2014) Role of oxygen in the polymerization and de-polymerization of alginate produced by Azotobacter vinelandii. J Chem Technol Biotechnol 356–365.Google Scholar
  16. Flores C, Moreno S, Espín G, Peña C, Galindo E (2013) Expression of alginases and alginate polymerase genes in response to oxygen, and their relationship with the alginate molecular weight in Azotobacter vinelandii. Enzym Microb Technol:85–91Google Scholar
  17. Franklin MJ, Nivens DE, Weadge JT, Howell PL (2011) Biosynthesis of the Pseudomonas aeruginosa extracellular polysaccharides, alginate, Pel, and Psl. Front Microbiol 2:167CrossRefPubMedPubMedCentralGoogle Scholar
  18. Gacesa P, Wusteman FS (1990) Plate assay for simultaneous detection of alginate lyases and determination of substrate specificity. Appl Environ Microbiol 56:2265–2267PubMedPubMedCentralGoogle Scholar
  19. Galindo E, Peña C, Núñez C, Segura D, Espín G (2007) Molecular and bioengineering strategies to improve alginate and polydydroxyalkanoate production by Azotobacter vinelandii. Microb Cell Factories 6:7CrossRefGoogle Scholar
  20. Gimmestad M, Ertesvåg H, Heggeset TM, Aarstad O, Svanem BI, Valla S (2009) Characterization of three new Azotobacter vinelandii alginate lyases, one of which is involved in cyst germination. J Bacteriol 191:4845–4853CrossRefPubMedPubMedCentralGoogle Scholar
  21. Green J, Paget MS (2004) Bacterial redox sensors. Nat Rev Microbiol 2:954–966CrossRefPubMedGoogle Scholar
  22. Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580CrossRefPubMedGoogle Scholar
  23. Hay ID, Rehman ZU, Ghaffor A, Rehm BH (2010) Bacterial biosynthesis of alginates. Chem Thecnol Biotech 85:752–759CrossRefGoogle Scholar
  24. Hay ID, Remminghorst U, Rehm BH (2009) MucR, a novel membrane-associated regulator of alginate biosynthesis in Pseudomonas aeruginosa. Appl Environ Microbiol 75:1110–1120CrossRefPubMedGoogle Scholar
  25. Hay ID, Ur Rehman Z, Moradali MF, Wang Y, Rehm BH (2013) Microbial alginate production, modification and its applications. Microb Biotechnol 6:637–650PubMedPubMedCentralGoogle Scholar
  26. Hay ID, Wang Y, Moradali MF, Rehman ZU, Rehm BH (2014) Genetics and regulation of bacterial alginate production. Environ Microbiol 16:2997–3011CrossRefPubMedGoogle Scholar
  27. Hefti MH, Françoijs KJ, de Vries SC, Dixon R, Vervoort J (2004) The PAS fold. A redefinition of the PAS domain based upon structural prediction. Eur J Biochem 271:1198–1208CrossRefPubMedGoogle Scholar
  28. Kennedy C, Gamal R, Hummprey R, Ramos J, Brigle K, Dean D (1986) The nifH, nifM, and NifN genes of Azotobacter vinelandii: characterization by Tn5 mutagenesis and isolation from pLARF1 gene bank. Mol Gen Genet 205:318–325CrossRefGoogle Scholar
  29. Kennedy C, Rudnick P, MacDonald T, Melton T (2005) Genus Azotobacter. In: Garrita GM (ed) Bergey’s manual of systematic bacteriology, vol 2 . Springer-Verlag, New York, NY, pp. 384–401part BGoogle Scholar
  30. Knutson CA, Jeanes A (1968) A new modification of the carbazole analysis: application to heteropolysaccharides. Anal Biochem 24:470–481CrossRefPubMedGoogle Scholar
  31. Larsen B, Haug A (1971) Biosynthesis of alginate. 1. Composition and structure of alginate produced by Azotobacter vinelandii (Lipman). Carbohydr Res 17:287–296CrossRefPubMedGoogle Scholar
  32. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25:402–408CrossRefPubMedGoogle Scholar
  33. Lloret L, Barreto R, León R, Moreno S, Martínez-Salazar J, Espín G, Soberón-Chávez G (1996) Genetic analysis of the transcriptional arrangement of Azotobacter vinelandii alginate biosynthetic genes: identification of two independent promoters. Mol Microbiol 21:449–457CrossRefPubMedGoogle Scholar
  34. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  35. Maier U, Büchs J (2001) Characterisation of the gas-liquid mass transfer in shaking bioreactors. Biochem Eng J 7:99–106CrossRefPubMedGoogle Scholar
  36. Manzo J, Cocotl-Yáñez M, Tzontecomani T, Martínez VM, Bustillos R, Velásquez C, Goiz Y, Solís Y, López L, Fuentes LE, Núñez C, Segura D, Espín G, Castañeda M (2011) Post-transcriptional regulation of the alginate biosynthetic gene algD by the Gac/Rsm system in Azotobacter vinelandii. J Mol Microbiol Biotechnol 21:147–159CrossRefPubMedGoogle Scholar
  37. Mejía-Ruíz H, Guzmán J, Moreno S, Soberón-Chávez G, Espín G (1997) The Azotobacter vinelandii alg8 and alg44 genes are essential for alginate synthesis and can be transcribed from an algD-independent promoter. Gene 199:271–277CrossRefPubMedGoogle Scholar
  38. Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N. YGoogle Scholar
  39. Moradali MF, Donati I, Sims IM, Ghods S, Rehm BH (2015) Alginate polymerization and modification are linked in Pseudomonas aeruginosa. MBio 6:e00453–e00415Google Scholar
  40. Núñez C, Bogachev AV, Guzmán G, Tello I, Guzmán J, Espín G (2009) The Na+-translocating NADH: ubiquinone oxidoreductase of Azotobacter vinelandii negatively regulates alginate synthesis. Microbiology 155:249–256CrossRefPubMedGoogle Scholar
  41. Núñez C, Peña C, Kloeckner W, Hernández-Eligio A, Bogachev AV, Moreno S, Guzmán J, Büchs J, Espín G (2013) Alginate synthesis in Azotobacter vinelandii is increased by reducing the intracellular production of ubiquinone. Appl Microbiol Biotechnol 97:2503–2512CrossRefPubMedGoogle Scholar
  42. Page WJ, Sadoff HL (1976) Physiological factors affecting transformation of Azotobacter vinelandii. J Bacteriol 125:1080–1087PubMedPubMedCentralGoogle Scholar
  43. Peña C, Campos M, Galindo E (1997) Changes in the molecular mass distributions: broth, viscosity and morphology of Azotobacter vinelandii cultured in shaken flaks. Appl Microbiol Biotechnol 48:510–515CrossRefGoogle Scholar
  44. Peña C, Galindo E, Büchs J (2011) The viscosifying power, degree of acetylation and molecular mass of the alginate produced by Azotobacter vinelandii in shaken flasks are determined by the oxygen transfer rate. Process Biochem 46:290–297CrossRefGoogle Scholar
  45. Qi Y, Rao F, Luo Z, Liang ZX (2009) A flavin cofactor-binding PAS domain regulates c-di-GMP synthesis in AxDGC2 from Acetobacter xylinum. Biochemistry 48:10275–10285CrossRefPubMedGoogle Scholar
  46. Remminghorst U, Rehm BH (2006) Alg44, a unique protein required for alginate biosynthesis in Pseudomonas aeruginosa. FEBS Lett 580:3883–3888CrossRefPubMedGoogle Scholar
  47. Römling U, Galperin MY, Gomelsky M (2013) Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol Mol Biol Rev 77:1–52CrossRefPubMedPubMedCentralGoogle Scholar
  48. Roy AB, Petrova OE, Sauer K (2012) The phosphodiesterase DipA (PA5017) is essential for Pseudomonas aeruginosa biofilm dispersion. J Bacteriol 194:2904–2915CrossRefPubMedPubMedCentralGoogle Scholar
  49. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, NYGoogle Scholar
  50. Setubal JC, dos Santos P, Goldman BS, Ertesvåg H, Espín G, Rubio LM, Valla S, Almeida NF, Balasubramanian D, Cromes L, Curatti L, Du Z, Godsy E, Goodner B, Hellner-Burris K, Hernández JA, Houmiel K, Imperial J, Kennedy C, Larson TJ, Latreille P, Ligon LS, Lu J, Maerk M, Miller NM, Norton S, O'Carroll IP, Paulsen I, Raulfs EC, Roemer R, Rosser J, Segura D, Slater S, Stricklin SL, Studholme DJ, Sun J, Viana CJ, Wallin E, Wang B, Wheeler C, Zhu H, Dean DR, Dixon R, Wood D (2009) Genome sequence of Azotobacter vinelandii, an obligate aerobe specialized to support diverse anaerobic metabolic processes. J Bacteriol 191:4534–4545CrossRefPubMedPubMedCentralGoogle Scholar
  51. Taboada B, Ciria R, Martínez-Guerrero CE, Merino E (2012) ProOpDB: Prokaryotic Operon DataBase. Nucleic Acids Res 40:D627–D631CrossRefPubMedGoogle Scholar
  52. Tal R, Wong HC, Calhoon R, Gelfand D, Fear AL, Volman G, Mayer R, Ross P, Amikam D, Weinhouse H, Cohen A, Sapir S, Ohana P, Benziman M (1998) Three cdg operons control cellular turnover of cyclic di-GMP in Acetobacter xylinum: genetic organization and occurrence of conserved domains in isoenzymes. J Bacteriol 180:4416–4425PubMedPubMedCentralGoogle Scholar
  53. Trujillo-Roldán MA, Moreno S, Espín G, Galindo E (2004) The roles of oxygen and alginate-lyase in determining the molecular weight of alginate produced by Azotobacter vinelandii. Appl Microbiol Biotechnol 63:742–747CrossRefPubMedGoogle Scholar
  54. Wang Y, Hay ID, Rehman ZU, Rehm BH (2015) Membrane-anchored MucR mediates nitrate-dependent regulation of alginate production in Pseudomonas aeruginosa. Appl Microbiol Biotechnol 99:7253–7265CrossRefPubMedGoogle Scholar
  55. Whitney JC, Howell PL (2013) Synthase-dependent exopolysaccharide secretion in Gram-negative bacteria. Trends Microbiol 21:63–72CrossRefPubMedGoogle Scholar
  56. Whitney JC, Whitfield GB, Marmont LS, Yip P, Neculai AM, Lobsanov YD, Robinson H, Ohman DE, Howell PL (2015) Dimeric c-di-GMP is required for post-translational regulation of alginate production in Pseudomonas aeruginosa. J Biol Chem 290:12451–12462CrossRefPubMedPubMedCentralGoogle Scholar
  57. Wilson KJ, Sessitsch A, Corbo JC, Giller KE, Akkermans AD, Jefferson RA (1995) Beta-Glucuronidase (GUS) transposons for ecological and genetic studies of rhizobia and other Gram-negative bacteria. Microbiology 141(Pt 7):1691–1705CrossRefPubMedGoogle Scholar
  58. Zhulin IB, Taylor BL, Dixon R (1997) PAS domain S-boxes in archaea, bacteria and sensors for oxygen and redox. Trends Biochem Sci 22:331–333CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Departamento de Microbiología Molecular, Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoCuernavacaMéxico
  2. 2.Departamento de Ingeniería Celular y Biocatálisis, Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoCuernavacaMéxico

Personalised recommendations