Applied Microbiology and Biotechnology

, Volume 101, Issue 2, pp 817–829 | Cite as

16S rRNA gene-based characterization of bacteria potentially associated with phosphate and carbonate precipitation from a granular autotrophic nitrogen removal bioreactor

  • Alejandro Gonzalez-Martinez
  • Alejandro Rodriguez-Sanchez
  • María Angustias Rivadeneyra
  • Almudena Rivadeneyra
  • Daniel Martin-Ramos
  • Riku Vahala
  • Jesús Gonzalez-Lopez
Environmental biotechnology


A bench-scale granular autotrophic nitrogen removal bioreactor (completely autotrophic nitrogen removal over nitrite (CANON) system) used for the treatment of synthetic wastewater was analyzed for the identification of microbiota with potential capacity for carbonate and phosphate biomineral formation. 16S ribosomal RNA (rRNA) gene-based studies revealed that different bacterial species found in the granular biomass could trigger the formation of phosphate and calcite minerals in the CANON bioreactor. iTag analysis of the microbial community in the granular biomass with potential ability to precipitate calcium carbonate and hydroxyapatite constituted around 0.79–1.32 % of total bacteria. Specifically, the possible hydroxyapatite-producing Candidatus Accumulibacter had a relative abundance of 0.36–0.38 % and was the highest phosphate-precipitating bacteria in the granular CANON system. With respect to calcite precipitation, the major potential producer was thought to be Stenotrophomonas with a 0.38–0.50 % relative abundance. In conclusion, our study showed evidences that the formation of hydroxyapatite and calcite crystals inside of the granular biomass of a CANON system for the treatment wastewater with high ammonium concentration was a biological process. Therefore, it could be suggested that microorganisms play an important role as a precipitation core and also modified the environment due to their metabolic activities.


Biomineralization Calcite CANON Nitrogen Phosphate iTag 



The authors would like to acknowledge the support offered by the various institutions involved in this research, namely the Department of Built Environment of the Aalto University; the Institute of Water Research, the Department of Microbiology, and the Department of Mineralogy and Petrology of the University of Granada; and the Institute of Nanoelectronics of the University of Munich.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. Ali M, Okabe S (2015) Anammox-based technologies for nitrogen removal: advances in process start-up and remaining issues. Chemosphere 141:144–153CrossRefPubMedGoogle Scholar
  2. Aloisi G, Gloter A, Krüger M, Wallman K, Guyot F, Zuddas P (2006) Nucleation of calcium carbonate on bacterial nanoglobules. Geology 34:1017–1020CrossRefGoogle Scholar
  3. Barwell LJ, Isaac NJB, Kunin WE (2015) Measuring β-diversity with species abundance data. J Anim Ecol 84:1112–1122CrossRefPubMedPubMedCentralGoogle Scholar
  4. Cha IT, Park SJ, Kim SJ, Kim JG, Jung MY, Shin KS, Kwon KK, Yang SH, Seo YS, Rhee SK (2016) Marinoscillum luteum sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 63:3475–3480CrossRefGoogle Scholar
  5. Crutchik D, Garrido JM (2016) Kinetics of the reversible reaction of struvite crystallization. Chemosphere 154:567–572CrossRefPubMedGoogle Scholar
  6. Crystale J, Ramos DD, Dantas RF, Junior AM, Lacorte S, Sans C, Esplugas S (2016) Can activated sludge treatments and advanced oxidation processes remove organophosphorous flame retardants? Environ Res 144:11–18CrossRefGoogle Scholar
  7. Driscoll CT, Chen CY, Hammerschmidt CR, Mason RP, Gilmour CC, Sunderland EM, Greenfield BK, Buckman KL, Lamborg CH (2012) Nutrient supply and mercury dynamics in marine ecosystems: a conceptual model. Environ Res 119:118–131CrossRefPubMedPubMedCentralGoogle Scholar
  8. Dupraz C, Visscher PT, Baumgartner LK, Reid RP (2004) Microbe-mineral interactions: early carbonate precipitation in a hypersaline lake (Eleuthera Island, Bahamas). Sedimentology 51:745–765CrossRefGoogle Scholar
  9. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200CrossRefPubMedPubMedCentralGoogle Scholar
  10. Elrich HL, Newman DK (2009) Geomicrobiology, 5th edn. CRC Press, New YorkGoogle Scholar
  11. Gonzalez-Martinez A, Poyatos JM, Hontoria E, Gonzalez-Lopez J, Osorio F (2011) Treatment of effluents polluted by nitrogen with new biological technologies based on autotrophic nitrification-denitrification processes. Rec Pat Biotechnol 5:74–84CrossRefGoogle Scholar
  12. Gonzalez-Martinez A, Leyva-Díaz JC, Rodriguez-Sanchez A, Muñoz-Palazon B, Rivadeneyra A, Poyatos JM, Rivadeneyra MA, Martinez-Toledo MV (2015a) Isolation and characterization of bacteria associated with calcium carbonate and struvite precipitation in a pure moving bed biofilm reactor-membrane biorreactor. Biofouling 31:333–348CrossRefPubMedGoogle Scholar
  13. Gonzalez-Martinez A, Rodriguez-Sanchez A, Muñoz-Palazon B, Garcia-Ruiz MJ, Osorio F, van Loosdrecht MCM, Gonzalez-Lopez J (2015b) Microbial community analysis of a full-scale DEMON bioreactor. Bioprocess Biosyst Eng 38:499–508CrossRefPubMedGoogle Scholar
  14. Gonzalez-Martinez A, Rodriguez-Sanchez A, Garcia-Ruiz MJ, Muñoz-Palazon B, Cortes-Lorenzo C, Osorio F, Vahala R (2016a) Performance and bacterial community dynamics of a CANON bioreactor acclimated from high to low operational temperatures. Chem Eng J 287:557–567CrossRefGoogle Scholar
  15. Gonzalez-Martinez A, Rodriguez-Sanchez A, Lotti T, Garcia-Ruiz MJ, Osorio F, Gonzalez-Lopez J, van Loosdrecht MCM (2016b) Comparison of bacterial communities of conventional and A-stage activated sludge systems. Nature Sci Rep 6:18786CrossRefGoogle Scholar
  16. Haegeman B, Hamelin J, Moriarty J, Neal P, Dushoff J, Weitz JS (2013) Robust estimation of microbial diversity in theory and in practice. ISME J 7:1092–1101CrossRefPubMedPubMedCentralGoogle Scholar
  17. Hao X, Heijnen JJ, Van Loosdrecht MCM (2002) Sensitivity analysis of a biofilm model describing a one-stage completely autotrophic nitrogen removal (CANON) process. Biotechnol Bioeng 77:266–277CrossRefPubMedGoogle Scholar
  18. Huse SM, Welch DM, Morrison HG, Sogin ML (2010) Ironing out the wrinkles in the rare biosphere through improved OTU clustering. Environ Microbiol 12:1889–1898CrossRefPubMedPubMedCentralGoogle Scholar
  19. Huy H, Jin L, Lee Y-K, Lee KC, Lee J-S, Yoon J-H, Ahn CY, Oh HM (2013) Arenimonas daechungensis sp. nov., isolated from the sediment of a eutrophic reservoir. Int J Syst Evol Microbiol 63:484–489CrossRefPubMedGoogle Scholar
  20. Kwon SW, Kim BY, Weon HY, Baek YK, Go SJ (2007) Arenimonas donghaensis gen. nov., sp. nov., isolated from seashore sand. Int J Syst Evol Microbiol 57:954–958Google Scholar
  21. Lin YM, Lotti T, Sharma PK, Van Loosdrecht MCM (2013) Apatite accumulation enhances the mechanical property of anammox granules. Water Res 47:4556–4566CrossRefPubMedGoogle Scholar
  22. Lu Y-Z, Wang H-F, Kotsopoulos TA, Zeng RJ (2016) Advanced phosphorous recovery using novel SBR system with granular sludge in simultaneous nitrification, denitrification and phosphorous removal process. Appl Microbiol Biotechnol 100:4367–4374CrossRefPubMedGoogle Scholar
  23. Luo C, Wu D (2015) Environment and economic risk: an analysis of carbon emission market and portfolio management. Environ Res. doi: 10.1016/j.envres.2016.02.007 Google Scholar
  24. Mañas A, Pocquet M, Biscans B, Sperandio M (2012) Parameters influencing calcium phosphate precipitation in granular sludge sequencing batch reactor. Chem Eng Sci 77:165–175CrossRefGoogle Scholar
  25. Martin JD (2004) Using XPowder—a software package for powder X-ray diffraction analysis. D.L. GR-1001/04.ISBN: 84–609–1497-6. Spain; 105 pp.Google Scholar
  26. Omelon S, Ariganello M, Bonucci E, Grynpas M, Nanci A (2013) A review of phosphate mineral nucleation in biology and geobiology. Calcif Tissue Int 93:382–396CrossRefPubMedPubMedCentralGoogle Scholar
  27. Oyserman BO, Noguera DR, Glavina Del Rio T, Tringe SG, McMahon KD (2015) Metatranscriptomic insights on gene expression and regulatory controls in Candidatus Accumulibacter phosphatis. ISME J:1–13Google Scholar
  28. Park H, Rosenthal A, Ramalingam K, Fillos J, Chandran K (2010) Linking community profiles, gene expression and N-removal in anammox bioreactors treating municipal anaerobic digestion reject water. Environ Sci Technol 44:6110–6116CrossRefPubMedGoogle Scholar
  29. Park JM, Park SJ, Ghim SY (2013) Characterization of three antifungal calcite-forming bacteria, Arthrobacter nicotianae KNUC2100, Bacillus thuringiensis KNUC2103, and Stenotrophomonas maltophilia KNUC2106, derived from the Korean Islands, Dokdo and their application on mortar. J Microbiol Biotechnol 23:1269–1278Google Scholar
  30. Rivadeneyra MA, Martin-Algarra A, Sanchez-Roman M, Sanchez-Navas A, Martin-Ramos D (2010) Amorphous caphosphate precursors for Ca-carbonate biominerals mediated by Chromohalobacter marismortui. ISME J 4:922–932CrossRefPubMedGoogle Scholar
  31. Rivadeneyra A, Gonzalez-Martinez A, Gonzalez-Lopez J, Martin-Ramos D, Martinez-Toledo MV, Rivadeneyra MA (2014) Precipitation of phosphate minerals by microorganisms isolated from fixed-biofilm reactor used for the treatment of domestic wastewater. Int J Environ Res Public Health 11:3689–3704CrossRefPubMedPubMedCentralGoogle Scholar
  32. Rodriguez-R LM, Konstantinidis KT (2014a) Estimating coverage in metagenomic data sets and why it matters. ISME J 8:1–3CrossRefGoogle Scholar
  33. Rodriguez-R LM, Konstantinidis KT (2014b) Nonpareil: a redundancy-based approach to assess the level of coverage in metagenomic datasets. Bioinformatics 30:629–635CrossRefPubMedGoogle Scholar
  34. Rusznyák A, Akob DM, Nietzsche S, Eusterhues K, Totsche KU, Neu TR, Frosch T, Popp J, Keiner R, Geletneky J, Katzschmann L, Schulze ED, Küsel K (2012) Calcite biomineralization by bacterial isolates from the recently discovered pristine karstic Herrenberg cave. Appl Environ Microbiol 78:1157–1167CrossRefPubMedPubMedCentralGoogle Scholar
  35. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541CrossRefPubMedPubMedCentralGoogle Scholar
  36. Seo HS, Kwon KK, Yang SH, Lee HS, Bae SS, Lee JH, Kim SJ (2009) Marinoscillum gen. nov., a member of the family “Flexibacteraceae”, with Marinoscillum pacificum sp. nov. from a marine sponge and Marinoscillum furvescens nom. rev, comb. nov. Int J Syst Evol Microbiol 59:1204–1208CrossRefPubMedGoogle Scholar
  37. Soares A, Veesam M, Simoes F, Wood E, Parsons SA, Stephenson T (2014) Bio-struvite: a new route to recover phosphorous from wastewater. Clean Soil Air Water 42:994–997CrossRefGoogle Scholar
  38. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729CrossRefPubMedPubMedCentralGoogle Scholar
  39. Uad I, Gonzalez-Lopez J, Silva-Castro GA, Gonzalez-Martinez A, Martin-Ramos D, Rivadeneyra A, Rivadeneyra MA (2014) Precipitation of carbonate crystals by bacteria isolated from a sumerged fixed-film biorreactor used for the treatment of urban wastewater. Int J Environ Res 8:435–446Google Scholar
  40. Wang C-C, Lee P-H, Kumar M, Huang Y-T, Sung S, Lin J-G (2010) Simultaneous partial nitrification, anaerobic ammonium oxidation and denitrification (SNAD) in a full-scale landfill-leachate treatment plant. J Hazard Mat 175:622–628CrossRefGoogle Scholar
  41. Winkler MKH, Kleerebezem R, Strous M, Chandran K, van Loosdrecht MCM (2013) Factors influencing the density of aerobic granular sludge. Appl Microbiol Biotechnol 97:7459–7468CrossRefPubMedGoogle Scholar
  42. Xing B-S, Guo Q, Jian X-Y, Chen Q-Q, Li P, Ni W-M, Jin R-C (2016) Influence of preservation temperature on the characteristics of anaerobic ammonium oxidation (anammox) granular sludge. Appl Microbiol Biotechnol 100:4637–4649CrossRefPubMedGoogle Scholar
  43. Xu G, Zhou Y, Yang Q, Lee ZM-L, Gu J, Lay W, Cao Y, Liu Y (2015) The challenges of mainstream deammonification process for municipal used water treatment. App Microbiol Biotechnol 99:2485–2490CrossRefGoogle Scholar
  44. Yamagishi T, Takeuchi M, Wakiya Y, Waki M (2013) Distribution and characterization of anammox in a swine wastewater activated sludge facility. Water Sci Technol 67:2330–2336CrossRefPubMedGoogle Scholar
  45. Yoon MH, Im WT (2007) Flavisolibacter ginsengiterrae gen. nov., sp. nov. and Flavisolibacter ginsengisoli sp. nov., isolated from ginseng cultivating soil. Int J Syst Evol. Microbiol 57:1834–1839Google Scholar
  46. Zhang X, Li D, Liang Y, Zhang Y, Fan D, Zhang J (2013) Application of membrane bioreactor for completely autotrophic nitrogen removal over nitrite (CANON) process. Chemosphere 93:2832–2838CrossRefPubMedGoogle Scholar
  47. Zhang L, Liu M, Zhang S, Yang Y, Peng Y (2015) Integrated fixed-biofilm activated sludge reactor as a powerful tool to enrich anammox biofilm and granular activated sludge. Chemosphere 140:114–118CrossRefPubMedGoogle Scholar
  48. Zhu G, Peng Y, Li B, Guo J, Yang Q, Wang S (2008) Biological removal of nitrogen from wastewater. Rev Environ Contam Toxicol 192:159–195PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Alejandro Gonzalez-Martinez
    • 1
  • Alejandro Rodriguez-Sanchez
    • 2
  • María Angustias Rivadeneyra
    • 3
  • Almudena Rivadeneyra
    • 4
  • Daniel Martin-Ramos
    • 5
  • Riku Vahala
    • 1
  • Jesús Gonzalez-Lopez
    • 2
    • 6
  1. 1.Department of Civil and Environmental EngineeringAalto UniversityEspooFinland
  2. 2.Department of Built EnvironmentAalto UniversityEspooFinland
  3. 3.Institute of Water ResearchUniversity of GranadaGranadaSpain
  4. 4.Department of MicrobiologyUniversity of GranadaGranadaSpain
  5. 5.Institute of NanoelectronicsTechnical University of MunichMunichGermany
  6. 6.Department of Mineralogy and PetrologyUniversity of GranadaGranadaSpain

Personalised recommendations