Advertisement

Applied Microbiology and Biotechnology

, Volume 101, Issue 1, pp 341–349 | Cite as

Secretion of an immunoreactive single-chain variable fragment antibody against mouse interleukin 6 by Lactococcus lactis

  • Suguru Shigemori
  • Masaki Ihara
  • Takashi Sato
  • Yoshinari Yamamoto
  • Shireen Nigar
  • Tasuku Ogita
  • Takeshi ShimosatoEmail author
Applied microbial and cell physiology

Abstract

Interleukin 6 (IL-6) is an important pathogenic factor in development of various inflammatory and autoimmune diseases and cancer. Blocking antibodies against molecules associated with IL-6/IL-6 receptor signaling are an attractive candidate for the prevention or therapy of these diseases. In this study, we developed a genetically modified strain of Lactococcus lactis secreting a single-chain variable fragment antibody against mouse IL-6 (IL6scFv). An IL6scFv-secretion vector was constructed by cloning an IL6scFv gene fragment into a lactococcal secretion plasmid and was electroporated into L. lactis NZ9000 (NZ-IL6scFv). Secretion of recombinant IL6scFv (rIL6scFv) by nisin-induced NZ-IL6scFv was confirmed by western blotting and was optimized by tuning culture conditions. We found that rIL6scFv could bind to commercial recombinant mouse IL-6. This result clearly demonstrated the immunoreactivity of rIL6scFv. This is the first study to engineer a genetically modified strain of lactic acid bacteria (gmLAB) that produces a functional anti-cytokine scFv. Numerous previous studies suggested that mucosal delivery of biomedical proteins using gmLAB is an effective and low-cost way to treat various disorders. Therefore, NZ-IL6scFv may be an attractive tool for the research and development of new IL-6 targeting agents for various inflammatory and autoimmune diseases as well as for cancer.

Keywords

gmLAB Immunoreactivity Interleukin 6 Lactococcus lactis scFv antibody 

Notes

Acknowledgments

We are grateful to Yasuhiro Yasaki, Kohichi Sudo, and Fu Namai (Faculty of Agriculture, Shinshu University) for their excellent support in purification of recombinant proteins.

Compliance with ethical standards

Funding

This study was supported by a Grant-in-Aid for the Japan Society for the Promotion of Science Fellows (No. 14J06317) to SS and by a grant from Sumitomo Electric Industries Group CSR Foundation (No. 2012#7) to TSh.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Ai C, Zhang Q, Ren C, Wang G, Liu X, Tian F, Zhao J, Zhang H, Chen YQ, Chen W (2014) Genetically engineered Lactococcus lactis protect against house dust mite allergy in a BALB/c mouse model. PLoS One 9(10):e109461. doi: 10.1371/journal.pone.0109461 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Atreya R, Mudter J, Finotto S, Mullberg J, Jostock T, Wirtz S, Schutz M, Bartsch B, Holtmann M, Becker C, Strand D, Czaja J, Schlaak JF, Lehr HA, Autschbach F, Schurmann G, Nishimoto N, Yoshizaki K, Ito H, Kishimoto T, Galle PR, Rose-John S, Neurath MF (2000) Blockade of interleukin 6 trans signaling suppresses T-cell resistance against apoptosis in chronic intestinal inflammation: evidence in crohn disease and experimental colitis in vivo. Nat Med 6(5):583–588. doi: 10.1038/75068 CrossRefPubMedGoogle Scholar
  3. Bird RE, Hardman KD, Jacobson JW, Johnson S, Kaufman BM, Lee SM, Lee T, Pope SH, Riordan GS, Whitlow M (1988) Single-chain antigen-binding proteins. Science 242(4877):423–426CrossRefPubMedGoogle Scholar
  4. Braat H, Rottiers P, Hommes DW, Huyghebaert N, Remaut E, Remon JP, van Deventer SJ, Neirynck S, Peppelenbosch MP, Steidler L (2006) A phase I trial with transgenic bacteria expressing interleukin-10 in Crohn’s disease. Clin Gastroenterol Hepatol 4(6):754–759. doi: 10.1016/j.cgh.2006.03.028 CrossRefPubMedGoogle Scholar
  5. Chu DK, Al-Garawi A, Llop-Guevara A, Pillai RA, Radford K, Shen P, Walker TD, Goncharova S, Calhoun WJ, Nair P, Jordana M (2015) Therapeutic potential of anti-IL-6 therapies for granulocytic airway inflammation in asthma. Allergy Asthma Clin Immunol 11(1):14. doi: 10.1186/s13223-015-0081-1 CrossRefPubMedPubMedCentralGoogle Scholar
  6. De Benedetti F, Brunner HI, Ruperto N, Kenwright A, Wright S, Calvo I, Cuttica R, Ravelli A, Schneider R, Woo P, Wouters C, Xavier R, Zemel L, Baildam E, Burgos-Vargas R, Dolezalova P, Garay SM, Merino R, Joos R, Grom A, Wulffraat N, Zuber Z, Zulian F, Lovell D, Martini A (2012) Randomized trial of tocilizumab in systemic juvenile idiopathic arthritis. N Engl J Med 367(25):2385–2395. doi: 10.1056/NEJMoa1112802 CrossRefPubMedGoogle Scholar
  7. de Ruyter PG, Kuipers OP, Beerthuyzen MM, van Alen-Boerrigter I, de Vos WM (1996) Functional analysis of promoters in the nisin gene cluster of Lactococcus lactis. J Bacteriol 178(12):3434–3439CrossRefPubMedPubMedCentralGoogle Scholar
  8. Hanson ML, Hixon JA, Li W, Felber BK, Anver MR, Stewart CA, Janelsins BM, Datta SK, Shen W, McLean MH, Durum SK (2014) Oral delivery of IL-27 recombinant bacteria attenuates immune colitis in mice. Gastroenterology 146(1):210–221.e13. doi: 10.1053/j.gastro.2013.09.060 CrossRefPubMedGoogle Scholar
  9. Heinrich PC, Castell JV, Andus T (1990) Interleukin-6 and the acute phase response. Biochem J 265(3):621–636CrossRefPubMedPubMedCentralGoogle Scholar
  10. Holliger P, Hudson PJ (2005) Engineered antibody fragments and the rise of single domains. Nat Biotechnol 23(9):1126–1136. doi: 10.1038/nbt1142 CrossRefPubMedGoogle Scholar
  11. Huibregtse IL, Snoeck V, de Creus A, Braat H, De Jong EC, Van Deventer SJ, Rottiers P (2007) Induction of ovalbumin-specific tolerance by oral administration of Lactococcus lactis secreting ovalbumin. Gastroenterology 133(2):517–528. doi: 10.1053/j.gastro.2007.04.073 CrossRefPubMedGoogle Scholar
  12. Hunter CA, Jones SA (2015) IL-6 as a keystone cytokine in health and disease. Nat Immunol 16(5):448–457. doi: 10.1038/ni.3153 CrossRefPubMedGoogle Scholar
  13. Illei GG, Shirota Y, Yarboro CH, Daruwalla J, Tackey E, Takada K, Fleisher T, Balow JE, Lipsky PE (2010) Tocilizumab in systemic lupus erythematosus: data on safety, preliminary efficacy, and impact on circulating plasma cells from an open-label phase I dosage-escalation study. Arthritis Rheum 62(2):542–552. doi: 10.1002/art.27221 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Ito H, Takazoe M, Fukuda Y, Hibi T, Kusugami K, Andoh A, Matsumoto T, Yamamura T, Azuma J, Nishimoto N, Yoshizaki K, Shimoyama T, Kishimoto T (2004) A pilot randomized trial of a human anti-interleukin-6 receptor monoclonal antibody in active Crohn’s disease. Gastroenterology 126(4):989–996 discussion 947CrossRefPubMedGoogle Scholar
  15. Jostock T, Mullberg J, Ozbek S, Atreya R, Blinn G, Voltz N, Fischer M, Neurath MF, Rose-John S (2001) Soluble gp130 is the natural inhibitor of soluble interleukin-6 receptor transsignaling responses. Eur J Biochem 268(1):160–167CrossRefPubMedGoogle Scholar
  16. Katsume A, Saito H, Yamada Y, Yorozu K, Ueda O, Akamatsu K, Nishimoto N, Kishimoto T, Yoshizaki K, Ohsugi Y (2002) Anti-interleukin 6 (IL-6) receptor antibody suppresses Castleman’s disease like symptoms emerged in IL-6 transgenic mice. Cytokine 20(6):304–311CrossRefPubMedGoogle Scholar
  17. Kishimoto T (2005) Interleukin-6: from basic science to medicine—40 years in immunology. Annu Rev Microbiol 23:1–21Google Scholar
  18. Kitaba S, Murota H, Terao M, Azukizawa H, Terabe F, Shima Y, Fujimoto M, Tanaka T, Naka T, Kishimoto T, Katayama I (2012) Blockade of interleukin-6 receptor alleviates disease in mouse model of scleroderma. Am J Pathol 180(1):165–176. doi: 10.1016/j.ajpath.2011.09.013 CrossRefPubMedGoogle Scholar
  19. Kruger C, Hu Y, Pan Q, Marcotte H, Hultberg A, Delwar D, van Dalen PJ, Pouwels PH, Leer RJ, Kelly CG, van Dollenweerd C, Ma JK, Hammarstrom L (2002) In situ delivery of passive immunity by lactobacilli producing single-chain antibodies. Nat Biotechnol 20(7):702–706. doi: 10.1038/nbt0702-702 CrossRefPubMedGoogle Scholar
  20. Kuipers OP, de Ruyter P, Kleerebezem M, de Vos WM (1998) Quorum sensing-controlled gene expression in lactic acid bacteria. J Biotechnol 64(1):15–21CrossRefGoogle Scholar
  21. Mierau I, Kleerebezem M (2005) 10 years of the nisin-controlled gene expression system (NICE) in Lactococcus lactis. Appl Microbiol Biotechnol 68(6):705–717. doi: 10.1007/s00253-005-0107-6 CrossRefPubMedGoogle Scholar
  22. Motta JP, Bermudez-Humaran LG, Deraison C, Martin L, Rolland C, Rousset P, Boue J, Dietrich G, Chapman K, Kharrat P, Vinel JP, Alric L, Mas E, Sallenave JM, Langella P, Vergnolle N (2012) Food-grade bacteria expressing elafin protect against inflammation and restore colon homeostasis. Sci Transl Med 4(158):158ra144. doi: 10.1126/scitranslmed.3004212 CrossRefPubMedGoogle Scholar
  23. Nelson AL (2010) Antibody fragments: hope and hype. MAbs 2(1):77–83CrossRefPubMedPubMedCentralGoogle Scholar
  24. Nelson AL, Reichert JM (2009) Development trends for therapeutic antibody fragments. Nat Biotechnol 27(4):331–337. doi: 10.1038/nbt0409-331 CrossRefPubMedGoogle Scholar
  25. Nishimoto N, Kanakura Y, Aozasa K, Johkoh T, Nakamura M, Nakano S, Nakano N, Ikeda Y, Sasaki T, Nishioka K, Hara M, Taguchi H, Kimura Y, Kato Y, Asaoku H, Kumagai S, Kodama F, Nakahara H, Hagihara K, Yoshizaki K, Kishimoto T (2005) Humanized anti-interleukin-6 receptor antibody treatment of multicentric Castleman disease. Blood 106(8):2627–2632. doi: 10.1182/blood-2004-12-4602 CrossRefPubMedGoogle Scholar
  26. Rezende RM, Oliveira RP, Medeiros SR, Gomes-Santos AC, Alves AC, Loli FG, Guimaraes MA, Amaral SS, da Cunha AP, Weiner HL, Azevedo V, Miyoshi A, Faria AM (2013) Hsp65-producing Lactococcus lactis prevents experimental autoimmune encephalomyelitis in mice by inducing CD4+LAP+ regulatory T cells. J Autoimmun 40:45–57. doi: 10.1016/j.jaut.2012.07.012 CrossRefPubMedGoogle Scholar
  27. Rincon M, Irvin CG (2012) Role of IL-6 in asthma and other inflammatory pulmonary diseases. Int J Biol Sci 8(9):1281–1290. doi: 10.7150/ijbs.4874 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Robert S, Gysemans C, Takiishi T, Korf H, Spagnuolo I, Sebastiani G, Van Huynegem K, Steidler L, Caluwaerts S, Demetter P, Wasserfall CH, Atkinson MA, Dotta F, Rottiers P, Van Belle TL, Mathieu C (2014) Oral delivery of glutamic acid decarboxylase (GAD)-65 and IL10 by Lactococcus lactis reverses diabetes in recent-onset NOD mice. Diabetes 63(8):2876–2887. doi: 10.2337/db13-1236 CrossRefPubMedGoogle Scholar
  29. Sambrook J, Russell D (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory, Cold Spring HarborGoogle Scholar
  30. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675CrossRefPubMedGoogle Scholar
  31. Shigemori S, Yonekura S, Sato T, Otani H, Shimosato T (2013) Expression of the immunoreactive buckwheat major allergenic storage protein in Lactococcus lactis. Appl Microbiol Biotechnol 97(8):3603–3611. doi: 10.1007/s00253-012-4608-9 CrossRefPubMedGoogle Scholar
  32. Shigemori S, Oshiro K, Wang P, Yamamoto Y, Wang Y, Sato T, Uyeno Y, Shimosato T (2014) Generation of dipeptidyl peptidase-IV-inhibiting peptides from β-lactoglobulin secreted by Lactococcus lactis. Biomed Res Int 2014:393598. doi: 10.1155/2014/393598 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Shigemori S, Watanabe T, Kudoh K, Ihara M, Nigar S, Yamamoto Y, Suda Y, Sato T, Kitazawa H, Shimosato T (2015) Oral delivery of Lactococcus lactis that secretes bioactive heme oxygenase-1 alleviates development of acute colitis in mice. Microb Cell Factories 14(1):189. doi: 10.1186/s12934-015-0378-2 CrossRefGoogle Scholar
  34. Shirota Y, Yarboro C, Fischer R, Pham TH, Lipsky P, Illei GG (2013) Impact of anti-interleukin-6 receptor blockade on circulating T and B cell subsets in patients with systemic lupus erythematosus. Ann Rheum Dis 72(1):118–128. doi: 10.1136/annrheumdis-2012-201310 CrossRefPubMedGoogle Scholar
  35. Smolen JS, Weinblatt ME, Sheng S, Zhuang Y, Hsu B (2014) Sirukumab, a human anti-interleukin-6 monoclonal antibody: a randomised, 2-part (proof-of-concept and dose-finding), phase II study in patients with active rheumatoid arthritis despite methotrexate therapy. Ann Rheum Dis 73(9):1616–1625. doi: 10.1136/annrheumdis-2013-205137 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Song L, Smith MA, Doshi P, Sasser K, Fulp W, Altiok S, Haura EB (2014) Antitumor efficacy of the anti-interleukin-6 (IL-6) antibody siltuximab in mouse xenograft models of lung cancer. J Thorac Oncol 9(7):974–982. doi: 10.1097/jto.0000000000000193 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Szepietowski JC, Nilganuwong S, Wozniacka A, Kuhn A, Nyberg F, van Vollenhoven RF, Bengtsson AA, Reich A, de Vries DE, van Hartingsveldt B, Robinson DW Jr, Gordon R, Hsu B (2013) Phase I, randomized, double-blind, placebo-controlled, multiple intravenous, dose-ascending study of sirukumab in cutaneous or systemic lupus erythematosus. Arthritis Rheum 65(10):2661–2671. doi: 10.1002/art.38091 PubMedGoogle Scholar
  38. Takiishi T, Korf H, Van Belle TL, Robert S, Grieco FA, Caluwaerts S, Galleri L, Spagnuolo I, Steidler L, Van Huynegem K, Demetter P, Wasserfall C, Atkinson MA, Dotta F, Rottiers P, Gysemans C, Mathieu C (2012) Reversal of autoimmune diabetes by restoration of antigen-specific tolerance using genetically modified Lactococcus lactis in mice. J Clin Invest 122(5):1717–1725. doi: 10.1172/jci60530 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Tanaka T, Kishimoto T (2011) Immunotherapy of tocilizumab for rheumatoid arthritis. J Clin Cell Immunol S6:001. doi: 10.4172/2155-9899.S6-001 Google Scholar
  40. Tanaka T, Narazaki M, Kishimoto T (2014) IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol 6(10):16. doi: 10.1101/cshperspect.a016295 CrossRefGoogle Scholar
  41. Villarejo MR, Zabin I (1974) β-galactosidase from termination and deletion mutant strains. J Bacteriol 120(1):466–474PubMedPubMedCentralGoogle Scholar
  42. Voller A, Bartlett A, Bidwell DE (1978) Enzyme immunoassays with special reference to ELISA techniques. J Clin Pathol 31(6):507–520CrossRefPubMedPubMedCentralGoogle Scholar
  43. Waldner MJ, Neurath MF (2014) Master regulator of intestinal disease: IL-6 in chronic inflammation and cancer development. Semin Immunol 26(1):75–79. doi: 10.1016/j.smim.2013.12.003 CrossRefPubMedGoogle Scholar
  44. Wang Y, Yamamoto Y, Shigemori S, Watanabe T, Oshiro K, Wang X, Wang P, Sato T, Yonekura S, Tanaka S, Kitazawa H, Shimosato T (2015) Inhibitory/suppressive oligodeoxynucleotide nanocapsules as simple oral delivery devices for preventing atopic dermatitis in mice. Mol Ther 23(2):297–309. doi: 10.1038/mt.2014.239 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Yamamoto M, Yoshizaki K, Kishimoto T, Ito H (2000) IL-6 is required for the development of Th1 cell-mediated murine colitis. J Immunol 164(9):4878–4882CrossRefPubMedGoogle Scholar
  46. Yokota S, Imagawa T, Mori M, Miyamae T, Aihara Y, Takei S, Iwata N, Umebayashi H, Murata T, Miyoshi M, Tomiita M, Nishimoto N, Kishimoto T (2008) Efficacy and safety of tocilizumab in patients with systemic-onset juvenile idiopathic arthritis: a randomised, double-blind, placebo-controlled, withdrawal phase III trial. Lancet 371(9617):998–1006. doi: 10.1016/s0140-6736(08)60454-7 CrossRefPubMedGoogle Scholar
  47. Yu H, Pardoll D, Jove R (2009) STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer 9(11):798–809. doi: 10.1038/nrc2734 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Suguru Shigemori
    • 1
    • 2
  • Masaki Ihara
    • 1
    • 3
  • Takashi Sato
    • 4
  • Yoshinari Yamamoto
    • 1
    • 2
  • Shireen Nigar
    • 1
    • 5
  • Tasuku Ogita
    • 3
  • Takeshi Shimosato
    • 1
    • 3
    • 6
    Email author
  1. 1.Department of Bioscience and Food Production Science, Interdisciplinary Graduate School of Science and TechnologyShinshu UniversityKamiinaJapan
  2. 2.Research Fellow of the Japan Society for the Promotion of ScienceJapan Society for the Promotion of ScienceTokyoJapan
  3. 3.Department of Interdisciplinary Genome Sciences and Cell Metabolism, Institute for Biomedical SciencesShinshu UniversityKamiinaJapan
  4. 4.Department of Internal Medicine and Clinical Immunology, Graduate School of MedicineYokohama City UniversityYokohamaJapan
  5. 5.Department of Nutrition and Food TechnologyJessore University of Science and TechnologyJessoreBangladesh
  6. 6.Supramolecular Complexes Unit, Research Center for Fungal and Microbial DynamismShinshu UniversityKamiinaJapan

Personalised recommendations