Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Ecotoxicity and environmental safety related to nano-scale zerovalent iron remediation applications

Abstract

This mini-review summarizes the current information that has been published on the various effects of nano-scale zerovalent iron (nZVI) on microbial biota, with an emphasis on reports that highlight the positive aspects of its application or its stimulatory effects on microbiota. By nature, nZVI is a highly reactive substance; thus, the possibility of nZVI being toxic is commonly suspected. Accordingly, the cytotoxicity of nZVI and the toxicity of nZVI-related products have been detected by laboratory tests and documented in the literature. However, there are numerous other published studies on its useful nature, which are usually skipped in reviews that deal only with the phenomenon of toxicity. Therefore, the objective of this article is to review both recent publications reporting the toxic effects of nZVI on microbiota and studies documenting the positive effects of nZVI on various environmental remediation processes. Although cytotoxicity is an issue of general importance and relevance, nZVI can reduce the overall toxicity of a contaminated site, which ultimately results in the creation of better living conditions for the autochthonous microflora. Moreover, nZVI changes the properties of the site in a manner such that it can also be used as a tool in a tailor-made approach to support a specific microbial community for the decontamination of a particular polluted site.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. Auffan M, Achouak W, Rose J, Roncato MA, Chanéac C, Waite DT, Maison A, Woicik JC, Wiesner MR, Bottero J-Y (2008) Relation between the redox state of iron-based nanoparticles and their cytotoxicity toward Escherichia coli. Environ Sci Technol 42:6730–6735. doi:10.1021/es800086f

  2. Barrera-Diaz CE, Lugo-Lugo V, Bilyeu B (2012) A review of chemical, electrochemical and biological methods for aqueous Cr(VI) reduction. J Hazard Mater 223:1–12. doi:10.1016/j.jhazmat.2012.04.054

  3. Chaithawiwat K, Vangnai A, McEvoy JM, Pruess B, Krajangpan S, Khan E (2016) Role of oxidative stress in inactivation of Escherichia coli BW25113 by nanoscale zero-valent iron. Sci Total Environ. doi:10.1016/j.scitotenv.2016.02.191

  4. Chen Q, Li J, Wu Y, Shen F, Yao M (2013) Biological responses of gram-positive and gram-negative bacteria to nZVI (Fe-0), Fe2+ and Fe3+. RSC Adv 3:13835–13842. doi:10.1039/c3ra40570b

  5. Cullen LG, Tilston EL, Mitchell GR, Collins CD, Shaw LJ (2011) Assessing the impact of nano- and micro-scale zerovalent iron particles on soil microbial activities: particle reactivity interferes with assay conditions and interpretation of genuine microbial effects. Chemosphere 82:1675–1682. doi:10.1016/j.chemosphere.2010.11.009

  6. Cundy AB, Hopkinson L, Whitby RLD (2008) Use of iron-based technologies in contaminated land and groundwater remediation: a review. Sci Total Environ 400:42–51. doi:10.1016/j.scitotenv.2008.07.002

  7. Dong H, Xie Y, Zeng G, Tang L, Liang J, He Q, Zhao Y, Wu Y (2016) The dual effects of carboxymethyl cellulose on the colloidal stability and toxicity of nanoscale zero-valent iron. Chemosphere 144:1682–1689. doi:10.1016/j.chemosphere.2015.10.066

  8. El-Temsah YS, Joner EJ (2013) Effects of nano-sized zero-valent iron (nZVI) on DDT degradation in soil and its toxicity to collembola and ostracods. Chemosphere 92:131–137. doi:10.1016/j.chemosphere.2013.02.039

  9. Ezechiáš M, Covino S, Cajthaml T (2014) Ecotoxicity and biodegradability of new brominated flame retardants: a review. Ecotox Environ Safe 110:153–167. doi:10.1016/j.ecoenv.2014.08.030

  10. Fajardo C, Sacca ML, Martinez-Gomariz M, Costa G, Nande M, Martin M (2013) Transcriptional and proteomic stress responses of a soil bacterium Bacillus cereus to nanosized zero-valent iron (nZVI) particles. Chemosphere 93:1077–1083. doi:10.1016/j.chemosphere.2013.05.082

  11. Gomes HI, Dias-Ferreira C, Ribeiro AB (2013) Overview of in situ and ex situ remediation technologies for PCB-contaminated soils and sediments and obstacles for full-scale application. Sci Total Environ 445:237–260. doi:10.1016/j.scitotenv.2012.11.098

  12. Huang Z, Chen Y, Hu Y (2016) The role of nanoscale zerovalent iron particles in the biosorption and biodegradation of BDE-47 by Pseudomonas stutzeri under aerobic conditions. Int Biodeter Biodeg 112:51–58. doi:10.1016/j.ibiod.2016.04.039

  13. Jagadevan S, Jayamurthy M, Dobson P, Thompson IP (2012) A novel hybrid nano zerovalent iron initiated oxidation—biological degradation approach for remediation of recalcitrant waste metalworking fluids. Water Res 46:2395–2404. doi:10.1016/j.watres.2012.02.006

  14. Jang M-H, Lim M, Hwang YS (2014) Potential environmental implications of nanoscale zero-valent iron particles for environmental remediation. Environ Health Toxicol 29:e2014022. doi:10.5620/eht.e2014022

  15. Jeon J-R, Murugesan K, Nam I-H, Chang Y-S (2013) Coupling microbial catabolic actions with abiotic redox processes: a new recipe for persistent organic pollutant (POP) removal. Biotechnol Adv 31:246–256. doi:10.1016/j.biotechadv.2012.11.002

  16. Jiang C, Xu X, Megharaj M, Naidu R, Chen Z (2015) Inhibition or promotion of biodegradation of nitrate by Paracoccus sp. in the presence of nanoscale zero-valent iron. Sci Total Environ 530–531:241–246. doi:10.1016/j.scitotenv.2015.05.044

  17. Kocur CMD, Lomheim L, Boparai HK, Chowdhury AIA, Weber KP, Austrins LM, Edwards EA, Sleep BE, O’Carroll DM (2015) Contributions of abiotic and biotic dechlorination following carboxymethyl cellulose stabilized nanoscale zero valent iron injection. Environ Sci Technol 49:8648–8656. doi:10.1021/acs.est.5b00719

  18. Kocur CMD, Lomheim L, Molenda O, Weber KP, Austrins LM, Sleep BE, Boparai HK, Edwards EA, O’Carroll DM (2016) Long-term field study of microbial community and dechlorinating activity following carboxymethyl cellulose-stabilized nanoscale zero-valent iron injection. Environ Sci Technol 50:7658–7670. doi:10.1021/acs.est.6b01745

  19. Koenig JC, Boparai HK, Lee MJ, O’Carroll DM, Barnes RJ, Manefield MJ (2016) Particles and enzymes: combining nanoscale zero valent iron and organochlorine respiring bacteria for the detoxification of chloroethane mixtures. J Hazard Mater 308:106–112. doi:10.1016/j.jhazmat.2015.12.036

  20. Kuang Y, Zhou Y, Chen Z, Megharaj M, Naidu R (2013) Impact of Fe and Ni/Fe nanoparticles on biodegradation of phenol by the strain Bacillus fusiformis (BFN) at various pH values. Bioresource Technol 136:588–594. doi:10.1016/j.biortech.2013.03.018

  21. Kumar N, Auffan M, Gattacceca J, Rose J, Olivi L, Borschneck D, Kvapil P, Jublot M, Kaifas D, Malleret L, Doumenq P, Bottero J-Y (2014) Molecular insights of oxidation process of iron nanoparticles: spectroscopic, magnetic, and microscopic evidence. Environ Sci Technol 48:13888–13894. doi:10.1021/es503154q

  22. Le TT, Nguyen K-H, Jeon J-R, Francis AJ, Chang Y-S (2015) Nano/bio treatment of polychlorinated biphenyls with evaluation of comparative toxicity. J Hazard Mater 287:335–341. doi:10.1016/j.jhazmat.2015.02.001

  23. Lefevre E, Bossa N, Wiesner MR, Gunsch CK (2016) A review of the environmental implications of in situ remediation by nanoscale zero valent iron (nZVI): behavior, transport and impacts on microbial communities. Sci Total Environ. doi:10.1016/j.scitotenv.2016.02.003

  24. Luo J, Feng L, Chen Y, Li X, Chen H, Xiao N, Wang D (2014) Stimulating short-chain fatty acids production from waste activated sludge by nano zero-valent iron. J Biotechnol 187:98–105. doi:10.1016/j.jbiotec.2014.07.444

  25. Mitrano DM, Motellier S, Clavaguera S, Nowack B (2015) Review of nanomaterial aging and transformations through the life cycle of nano-enhanced products. Environ Int 77:132–147. doi:10.1016/j.envint.2015.01.013

  26. Morrison SJ, Metzler DR, Dwyer BP (2002) Removal of As, Mn, Mo, Se, U, V and Zn from groundwater by zero-valent iron in a passive treatment cell: reaction progress modeling. J Contam Hydrol 56:99–116. doi:10.1016/s0169-7722(01)00205-4

  27. Němeček J, Lhotský O, Cajthaml T (2014) Nanoscale zero-valent iron application for in situ reduction of hexavalent chromium and its effects on indigenous microorganism populations. Sci Total Environ 485:739–747. doi:10.1016/j.scitotenv.2013.11.105

  28. Němeček J, Pokorný P, Lacinová L, Černík M, Masopustová Z, Lhotský O, Filipová A, Cajthaml T (2015) Combined abiotic and biotic in-situ reduction of hexavalent chromium in groundwater using nZVI and whey: a remedial pilot test. J Hazard Mater 300:670–679. doi:10.1016/j.jhazmat.2015.07.056

  29. Němeček J, Pokorný P, Lhotský O, Knytl V, Najmanová P, Steinová J, Černík M, Filipová A, Filip J, Cajthaml T (2016) Combined nano-biotechnology for in-situ remediation of mixed contamination of groundwater by hexavalent chromium and chlorinated solvents. Sci Total Environ 563:822–834. doi:10.1016/j.scitotenv.2016.01.019

  30. Ortega-Calvo J-J, Jimenez-Sanchez C, Pratarolo P, Pullin H, Scott TB, Thompson IP (2016) Tactic response of bacteria to zero-valent iron nanoparticles. Environ Pollut 213:438–445. doi:10.1016/j.envpol.2016.01.093

  31. Pádrová K, Čejková A, Cajthaml T, Kolouchová I, Vítová M, Sigler K, Řezanka T (2016) Enhancing the lipid productivity of yeasts with trace concentrations of iron nanoparticles. Folia Microbiol 61:329–335. doi:10.1007/s12223-015-0442-7

  32. Pádrová K, Lukavský J, Nedbalová L, Čejková A, Cajthaml T, Sigler K, Vítova M, Řezanka T (2015) Trace concentrations of iron nanoparticles cause overproduction of biomass and lipids during cultivation of cyanobacteria and microalgae. J Appl Phycol 27:1443–1451. doi:10.1007/s10811-014-0477-1

  33. Ravikumar KVG, Kumar D, Rajeshwari A, Madhu GM, Mrudula P, Chandrasekaran N, Mukherjee A (2016) A comparative study with biologically and chemically synthesized nZVI: applications in Cr (VI) removal and ecotoxicity assessment using indigenous microorganisms from chromium-contaminated site. Environ Sci Pollut R 23:2613–2627. doi:10.1007/s11356-015-5382-x

  34. Ronavari A, Balázs M, Tolmacsov P, Molnar C, Kiss I, Kukovecz A, Konya Z (2016) Impact of the morphology and reactivity of nanoscale zero-valent iron (NZVI) on dechlorinating bacteria. Water Res 95:165–173. doi:10.1016/j.watres.2016.03.019

  35. Sevcu A, El-Temsah YS, Joner EJ, Cernik M (2011) Oxidative stress induced in microorganisms by zero-valent iron nanoparticles. Microbes Environ 26:271–281. doi:10.1264/jsme2.ME11126

  36. Suanon F, Sun Q, Li M, Cai X, Zhang Y, Yan Y, Yu C-P (2016b) Application of nanoscale zero valent iron and iron powder during sludge anaerobic digestion: impact on methane yield and pharmaceutical and personal care products degradation. J Hazard Mater 321:47–53. doi:10.1016/j.jhazmat.2016.08.076

  37. Suanon F, Sun Q, Mama D, Li J, Dimon B, Yu C-P (2016a) Effect of nanoscale zero-valent iron and magnetite (Fe3O4) on the fate of metals during anaerobic digestion of sludge. Water Res 88:897–903. doi:10.1016/j.watres.2015.11.014

  38. Velimirovic M, Simons Q, Bastiaens L (2015) Use of CAH-degrading bacteria as test-organisms for evaluating the impact of fine zerovalent iron particles on the anaerobic subsurface environment. Chemosphere 134:338–345. doi:10.1016/j.chemosphere.2015.04.068

  39. Wang T, Zhang D, Dai LL, Chen YG, Dai XH (2016) Effects of metal nanoparticles on methane production from waste-activated sludge and microorganism community shift in anaerobic granular sludge. Sci Rep 6:25857. doi:10.1038/srep25857

  40. Xiu Z-M, Gregory KB, Lowry GV, Alvarez PJJ (2010) Effect of bare and coated nanoscale zerovalent iron on tceA and vcrA gene expression in Dehalococcoides spp. Environ Sci Technol 44:7647–7651. doi:10.1021/es101786y

  41. Xiu Z-M, Jin Z-H, Li T-L, Mahendra S, Lowry GV, Alvarez PJJ (2009) Effects of nano-scale zero-valent iron particles on a mixed culture dechlorinating trichloroethylene. Bioresource Technol 101:1141–1146. doi:10.1016/j.biortech.2009.09.057

  42. Xu G, Wang J, Lu M (2014) Complete debromination of decabromodiphenyl ether using the integration of Dehalococcoides sp. strain CBDB1 and zero-valent iron. Chemosphere 117:455–461. doi:10.1016/j.chemosphere.2014.07.077

  43. Yu B, Jin X, Kuang Y, Megharaj M, Naidu R, Chen Z (2015) An integrated biodegradation and nano-oxidation used for the remediation of naphthalene from aqueous solution. Chemosphere 141:205–211. doi:10.1016/j.chemosphere.2015.07.050

Download references

Acknowledgments

This work was funded by grant Competence Centre TE01020218 of the Czech Technology Agency Foundation. The research leading to these results has received funding from the Norwegian Financial Mechanism 2009–2014 and the Ministry of Education, Youth and Sports under Project Contract no. MSMT-23681/2015-1.

Author information

Correspondence to Tomáš Cajthaml.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Semerád, J., Cajthaml, T. Ecotoxicity and environmental safety related to nano-scale zerovalent iron remediation applications. Appl Microbiol Biotechnol 100, 9809–9819 (2016). https://doi.org/10.1007/s00253-016-7901-1

Download citation

Keywords

  • Nano-scale zerovalent iron
  • In situ remediation
  • Stimulation
  • Toxicity
  • Oxidative stress