Advertisement

Applied Microbiology and Biotechnology

, Volume 101, Issue 2, pp 711–723 | Cite as

Characterization of the biochemical, physiological, and medicinal properties of Streptomyces hygroscopicus ACTMS-9H isolated from the Amazon (Brazil)

  • Sandrine M. A. Lima
  • Janaína. G. S. Melo
  • Gardênia C. G. Militão
  • Gláucia M. S. Lima
  • Maria do Carmo A. Lima
  • Jaciana S. Aguiar
  • Renata M. Araújo
  • Raimundo Braz-Filho
  • Pascal Marchand
  • Janete M. Araújo
  • Teresinha G. Silva
Applied microbial and cell physiology

Abstract

Actinomycetes are known to produce numerous secondary bioactive metabolites of pharmaceutical interest. The purpose of this study was to isolate, characterize, and investigate the antibacterial, antifungal, and anticancer activities of metabolites produced by Actinobacteria isolated from the rhizosphere of Paullinia cupana. The Actinobacteria was identified as Streptomyces hygroscopicus ACTMS-9H. Based on a bioguided study, the methanolic biomass extract obtained from submerged cultivation had the most potent antibacterial, antifungal, and cytotoxic activities. This extract was partitioned with n-hexane, ethyl acetate, and 2-butanol. Elaiophylin was isolated from the methanolic biomass extract, and its molecular formula was determined (C54H88O18) based on 1H and 13C NMR, IR and MS analyses. The 2-butanol phase was fractionated into four fractions (EB1, EB2A, EB2B, and EB3M). Chemical prospecting indicated the presence of alkaloids, saponins, and reducing sugars in the methanolic extract and 2-butanol phase. The elaiophylin displayed anticancer activity in HEp-2 and HL-60 cells with an IC50 of 1 μg/mL. The EB1 fraction was selectively toxic to HL-60 cells with IC50 of 9 ng/mL. Bioautography showed that the EB1 fraction contained an alkaloid with antibacterial and antifungal activities (MIC values ≤1.9 and <3.9 μg/mL, respectively). In conclusion, the EB1 fraction and elaiophylin of S. hygroscopicus have potent antimicrobial, antifungal, and anticancer activities.

Keywords

Actinobacteria Fermentation Elaiophylin Bioautography 

Notes

Acknowledgments

The authors thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Fundação de Amparo a Ciência e Tecnologia de Pernambuco (FACEPE) for financial support. The authors thank CETENE for the use of the Scanning Electron Microscopy. We are grateful to Maria D. Rodrigues for the technical assistance. This manuscript was edited for the English language by American Journal Experts (certificate verification key: 93F3-2B7F-4692-D4CA-B62F).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Supplementary material

253_2016_7886_MOESM1_ESM.pdf (724 kb)
ESM 1 (PDF 723 kb)

References

  1. Alley MC, Scudiere DA, Monks A, Hursey M, Czerwinski MJ, Fine DL, Abbott BJ, Mayo JG, Shoemaker RH, Boyd MR (1998) Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay. Cancer Res 48:589–601Google Scholar
  2. Ângelo PCS, Nunes-Silva CG, BrÍgido MM, Azevedo JSN, Assunção EN, Sousa ARB, Patrício FJB, Rego MM, Peixoto JCC, Oliveira-Jr WP, Freitas DV, Almeida ERP, Viana AMHA, Souza AFPN, Andrade EV, Acosta POA, Batista JS, Walter MEMT, Leomil L, Anjos DAS, Coimbra RCM, Barbosa MHN, Honda E, Pereira SS, Silva A, Pereira JO, Silva ML, Marins M, Holanda FJ, Abreu RMM, Pando SC, Gonçalves JFC, Carvalho ML, Leal-Mesquita ERRBP, Silveira MA, Batista WC, Atroch AL, França SC, Porto JIR, Schneider MPC, Astolfi-Filho S (2008) Guarana (Paullinia cupana var. sorbilis), an anciently consumed stimulant from the Amazon rain forest: the seeded-fruit transcriptome. Plant Cell Rep. doi: 10.1007/s00299-007-0456-y PubMedGoogle Scholar
  3. Anzai K, Ohno M, Nakashima T, Kuwahara N, Suzuki R, Tamura T, Komaki H, Miyadoh S, Harayama S, Ando K (2008) Taxonomic distribution of Streptomyces species capable of producing bioactive compounds among strains preserved at NITE/NBRC. Appl Microbiol Biotechnol. doi: 10.1007/s00253-008-1510-6 PubMedGoogle Scholar
  4. Baker DD, Chu M, Oza U, Rajgarhia V (2007) The value of natural products to future pharmaceutical discovery. Nat Prod Rep. doi: 10.1039/b602241n Google Scholar
  5. Ballav S, Dastager SG, Kerkar S (2012) Biotechnological significance of actinobacterial research in India. Recent Res Sci Technol. doi: 10.13140/2.1.2021.7285 Google Scholar
  6. Benizri E, Baudoin E, Guckert A (2001) Root colonization by inoculated plant growth-promoting rhizobacteria. Biocontrol Sci Tech. doi: 10.1080/09583150120076120 Google Scholar
  7. Choma IM, Grzelak EM (2011) Bioautography detection in thin-layer chromatography. J Chromatogr A. doi: 10.1016/j.chroma.2010.12.069 PubMedGoogle Scholar
  8. CLSI (2008) Clinical and Laboratory Standards Institute: reference method for broth dilution antifungal susceptibility testing of yeasts and filamentous fungi. Approved standard: M27-A3 e M38-A2. Wayne (PA): CLSI, 2008Google Scholar
  9. CLSI (2010) Clinical and Laboratory Standards Institute: performance standards for antimicrobial susceptibility testing. Twentieth informational supplement: M100-S20 e M100-S20-U. Wayne (PA): CLSI, 2010Google Scholar
  10. Cragg GM, Newman DJ (2000) Antineoplastic agents from natural sources: achievements and future directions. Expert Opin Inv Drugs. doi: 10.1517/13543784.9.12.2783 Google Scholar
  11. Demain AL (1999) Pharmaceutically active secondary metabolites of microorganisms. Appl Microbiol Biotechnol. doi: 10.1007/s002530051546 Google Scholar
  12. Demain AL, Sanchez S (2009) Microbial drug discovery: 80 years of progress. J Antibiot. doi: 10.1038/ja.2008.16 PubMedGoogle Scholar
  13. Doseung L, Woo JK, Kim D, Kim M, Cho SK, Kim JH, Park SP, Lee HY, Riu KZ, Lee DS (2011) Antiviral activity of methylelaiophylin, an α-glucosidase inhibitor. J Microbiol Biotechnol. doi: 10.4014/jmb.1011.11002 Google Scholar
  14. Elliah P, Ramana T, Bapi Raju KVVS, Sujatha P, Uma Sankar AM (2004) Investigation on marine actinomycetes from Bay of Bengal near Karnataka coast of Andra Pradesh. Asian J Microbiol Biotechnol Environ Sci 6:53–56Google Scholar
  15. Fang A, Wong GW, Demain AL (2000) Enhancement of the antifungal activity of rapamycin by the coproduced elaiophylin and nigericin. J Antibiot 53:158–162CrossRefPubMedGoogle Scholar
  16. Flardh K, Buttner MJ (2009) Streptomyces morphogenetics: dissecting differentiation in a filamentous bacterium. Nat Rev Microbiol. doi: 10.1038/nrmicro1968 PubMedGoogle Scholar
  17. Furumai T, Yamakawa T, Yoshida R, Igarashi Y (2003) Clethramycin, a new inhibitor of pollen tube growth with antifungal activity from Streptomyces hygroscopicus TP-A0623. J Antibiot. doi: 10.7164/antibiotics.56.700 Google Scholar
  18. Gesheva V (2009) Optimization of the production medium for biosynthesis of antifungal antibiotic Ak-111-81 by phosphate-deregulated mutant of Streptomyces hygroscopicus. Appl Microbiol Biotechnol. doi: 10.1007/s12010-009-8629-5 Google Scholar
  19. Harborne JB (1998) Phytochemical methods: a guide to modern techniques of plant analysis. Chapman and Hall, New YorkGoogle Scholar
  20. Haydock SF, Mironenko T, Ghoorahoo FI, Leadlay PF (2004) The putative elaiophylin biosynthetic gene cluster in Streptomyces sp. DSM4137 is adjacent to genes encoding adenosylcobalamin-dependent methylmalonyl CoA mutase and to genes for synthesis of cobalamin. J Biotechnol. doi: 10.1016/j.jbiotec.2004.03.022 PubMedGoogle Scholar
  21. He H, Williamson RT, Shen B, Graziani EI, Yang HY, Sakya SM, Petersen PJ, Carter GT (2002) Mannopeptimycins, novel antibacterial glycopeptides from Streptomyces hygroscopicus, LL-AC98. J Am Chem Soc. doi: 10.1021/ja020257s PubMedCentralGoogle Scholar
  22. Igarashi Y, Miura SS, Fujita T, Furumai T (2006) Pterocidin, a cytotoxic compound from the endophytic Streptomyces hygroscopicus. J Antibiot. doi: 10.1038/ja.2006.28 Google Scholar
  23. Kumar PS, Raj JP, Duraipandiyan V, Ignacimuthu S (2012) Antibacterial activity of some actinomycetes from Tamil Nadu, India. Asian Pac J Trop Biomed. doi: 10.1016/S2221-1691(13)60003-9 Google Scholar
  24. Kuri CMB (2008) The guarana industry in Brazil. Interbus Econ Res J. doi: 10.19030/iber.v7i5.3258 Google Scholar
  25. Lee SY, Kim MS, Kim HS, Kim YH, Hong SD, Lee JJ (1996) Structure determination and biological activities of elaiophylin produced by Streptomyces sp. MCY-846. J Microbiol Biotechnol 6:245–249Google Scholar
  26. Lee SY, Kim HS, Kim YH, Kim SB, Han SB, Kim HM, Hong SD, Lee JJ (1997) Immunosupressive activity of elaiophylins. J Microbiol Biotechnol 7:272–277Google Scholar
  27. Li S, Wu L, Chen F, Wang H, Sun G, Wang Y (2011) Rapid identification of elaiophylin from Streptomyces hygroscopicus 17997, a geldanamycin producer. J Microbiol Biotechnol. doi: 10.4014/jmb.1011.11002 Google Scholar
  28. Newman DJ, Cragg GM (2004) Marine natural products and related compounds in clinical and advanced preclinical trials. J Nat Prod. doi: 10.1021/np040031y Google Scholar
  29. Newman DJ, Cragg GM, Snader KM (2000) The influence of natural products upon drug discovery. Nat Prod Rep. doi: 10.1039/A902202C PubMedGoogle Scholar
  30. Newman DJ, Cragg GM, Snader KM (2003) Natural products as sources of new drugs over the period 1981-2002. J Nat Prod. doi: 10.1021/np030096l PubMedGoogle Scholar
  31. Prapagdee B, Kuekulvong C, Mongkolsuk S (2008) Antifungal potential of extracellular metabolites produced by Streptomyces hygroscopicus against phytopathogenic fungi. Int J Biol Sci. doi: 10.7150/ijbs.4.330 PubMedPubMedCentralGoogle Scholar
  32. Puder C, Krastel P, Zeeck A (2000) Streptazones A, B1, B2, C, and D: new piperidine alkaloids from Streptomycetes. J Nat Prod. doi: 10.1021/np0001373 PubMedGoogle Scholar
  33. Raja A, Prabakarana P (2011) Actinomycetes and drug-an overview. Am J Drug Dis Dev. doi: 10.3923/ajdd.2011.75.84 Google Scholar
  34. Rajeswari P, Jose PA, Amiya R, Jebakumar SRD (2015) Characterization of saltern based Streptomyces sp. and statistical media optimization for its improved antibacterial activity. Front Microbiol. doi: 10.3389/fmicb.2014.00753 PubMedPubMedCentralGoogle Scholar
  35. Robinson T, Singh D, Nigam P (2001) Solid-state fermentation: a promising microbial technology for secondary metabolite production. Appl Microbiol Biot. doi: 10.1007/s002530000565 Google Scholar
  36. Rong X, Huang Y (2012) Taxonomic evaluation of the Streptomyces hygroscopicus clade using multilocus sequence analysis and DNA–DNA hybridization, validating the MLSA scheme for systematics of the whole genus. Syst App Microbiol. doi: 10.1016/j.syapm.2011.10.004 Google Scholar
  37. Scorzoni L, Benaducci T, Almeida AMF, Silva DHS, Bolzani VS, Gianinni MJSM (2007) The use of standard methodology for determination of antifungal activity of natural products against medical yeasts Candida sp. and Cryptococcus sp. Braz J Microbiol. doi: 10.1590/S1517-83822007000300001 Google Scholar
  38. Selvameenal L, Radhakrishnan M, Balagurunathan R (2009) Antibiotic pigment from desert soil actinomycetes; biological activity, purification and chemical screening. Indian J Pharm Sci. doi: 10.4103/0250-474X.58174 PubMedPubMedCentralGoogle Scholar
  39. Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol. doi: 10.1099/00207713-16-3-313 Google Scholar
  40. Singh LS, Sharma H, Talukdar NC (2014) Production of potent antimicrobial agent by actinomycete, Streptomyces sannanensis strain SU118 isolated from phoomdi in Loktak Lake of Manipur, India. BMC Microbiol. doi: 10.1186/s12866-014-0278-3 Google Scholar
  41. Solecka J, Zajko J, Postek M, Rajnisz A (2012) Biologically active secondary metabolites from Actinomycetes. Cent Eur J Biol. doi: 10.2478/s11535-012-0036-1 Google Scholar
  42. Stackebrandt E, Rainey FA, Ward-Rainey N (1997) Proposal for a new hierarchic classification system, Actinobacteria class nov. Int J Syst Bacteriol. doi: 10.1099/00207713-47-2-479 Google Scholar
  43. Staneck J, Roberts GD (1974) Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 28(2):226–231PubMedPubMedCentralGoogle Scholar
  44. Subramani R, Aalbersberg W (2012) Marine actinomycetes: an ongoing source of novel bioactive metabolites. Microbiol Res. doi: 10.1016/j.micres.2012.06.005 PubMedGoogle Scholar
  45. Thomas AT, Rao JV, Subrahmanyam VM, Chandrashekhar HR, Maliyakkal N, Kisan TK, Joseph A, Udupa N (2011) In vitro anticancer activity of microbial isolates from diverse habitats. Braz J Pharm Sci. doi: 10.1590/S1984-82502011000200009 Google Scholar
  46. Weisburg WG, Barns SM, Pelletier DA, Gene-Trak DJL (1991) 16s ribosomal DNA amplification for phylogenetic study. J Bacteriol doi: 0021-9193/91/020697-07$02.00/0Google Scholar
  47. Williams ST, Sharp ME, Holt JG (1989) Bergey’s manual of systematic bacteriology. In: Williams and Wilkins, 1st ed., vol. 4, Baltimore, pp 2492–2504Google Scholar
  48. Wu C, Tan Y, Gan M, Wang Y, Guan Y, Hu X, Zhou H, Shang X, You X, Yang Z, Xiao C (2013) Identification of elaiophylin derivatives from the marine-derived actinomycete Streptomyces sp. 7-145 using PCR-based screening. J Nat Prod. doi: 10.1021/np4006794 Google Scholar
  49. Zgurskaya HI, Nikaido H (2000) Multidrug resistance mechanisms: drug efflux across two membranes. Mol Microbiol. doi: 10.1046/j.1365-2958.2000.01926.x2000;37(2):219-25 PubMedGoogle Scholar
  50. Zhang H, Sun GZ, Li X, Pan HY, Zhang YS (2010) A new geldanamycin analogue from Streptomyces hygroscopicus. Molecules. doi: 10.3390/molecules15031161 PubMedCentralGoogle Scholar
  51. Zhang N, Sun C, Song Z, Guo H, Zhang B, Qiu N, Liu X (2011) Isolation, purification and characterization of antifungal substances from Streptomyces hygroscopicus BS-112. Acta Microbiol Sin 51(2):224–232Google Scholar
  52. Zhao X, Fang Y, Yang Y, Qin Y, Wu P, Wang T, Lai H, Meng L, Wang D, Zheng Z, Lu X, Zhang H, Gao Q, Zhou J, Ma D (2015) Elaiophylin, a novel autophagy inhibitor, exerts antitumor activity as a single agent in ovarian cancer cells. Autophagy. doi: 10.1080/15548627.2015.1017185 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Sandrine M. A. Lima
    • 1
  • Janaína. G. S. Melo
    • 1
  • Gardênia C. G. Militão
    • 2
  • Gláucia M. S. Lima
    • 1
  • Maria do Carmo A. Lima
    • 1
  • Jaciana S. Aguiar
    • 1
  • Renata M. Araújo
    • 3
  • Raimundo Braz-Filho
    • 4
    • 5
  • Pascal Marchand
    • 6
  • Janete M. Araújo
    • 1
  • Teresinha G. Silva
    • 1
  1. 1.Departamento de Antibióticos, Rua Prof. Moraes Rego, 1235Universidade Federal de PernambucoRecifeBrazil
  2. 2.Departamento de Fisiologia e FarmacologiaUniversidade Federal de PernambucoRecifeBrazil
  3. 3.Instituto de QuímicaUniversidade Federal do Rio Grande do NorteLagoa NovaBrazil
  4. 4.Laboratório de Ciências QuímicasUniversidade Estadual do Norte Fluminense Darcy RibeiroCampos dos GoytacazesBrazil
  5. 5.Departamento de QuímicaUniversidade Federal Rural do Rio de JaneiroSeropédicaBrazil
  6. 6.Laboratoire de Chimie Thérapeutique, Cibles et Médicaments des Infections et du Cancer, IICiMed EA 1155, Institut de Recherche en Santé 2Université de NantesNantesFrance

Personalised recommendations