Applied Microbiology and Biotechnology

, Volume 100, Issue 23, pp 9845–9860 | Cite as

Current advances in molecular methods for detection of nitrite-dependent anaerobic methane oxidizing bacteria in natural environments

  • Jing Chen
  • Richard Dick
  • Jih-Gaw Lin
  • Ji-Dong GuEmail author


Nitrite-dependent anaerobic methane oxidation (n-damo) process uniquely links microbial nitrogen and carbon cycles. Research on n-damo bacteria progresses quickly with experimental evidences through enrichment cultures. Polymerase chain reaction (PCR)-based methods for detecting them in various natural ecosystems and engineered systems play a very important role in the discovery of their distribution, abundance, and biodiversity in the ecosystems. Important characteristics of n-damo enrichments were obtained and their key significance in microbial nitrogen and carbon cycles was investigated. The molecular methods currently used in detecting n-damo bacteria were comprehensively reviewed and discussed for their strengths and limitations in applications with a wide range of samples. The pmoA gene-based PCR primers for n-damo bacterial detection were evaluated and, in particular, several incorrectly stated PCR primer nucleotide sequences in the published papers were also pointed out to allow correct applications of the PCR primers in current and future investigations. Furthermore, this review also offers the future perspectives of n-damo bacteria based on current information and methods available for a better acquisition of new knowledge about this group of bacteria.


N-damo Anaerobic methane oxidation Denitrification Methylomirabilis oxyfera-like bacteria Molecular detection PCR primer pmoA gene 



This project was supported by Hong Kong PhD Fellowship (JC) and RGC GRF grant no. 701913 (J-DG). Additional financial support for this research project was from the laboratory fund.

Compliance with ethical standards


This study was funded by RGC GRF grant no. 701913 (J-DG) and a Hong Kong PhD Fellowship (JC).

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. Buhring SI, Elvert M, Witte U (2005) The microbial community structure of different permeable sandy sediments characterized by the investigation of bacterial fatty acids and fluorescence in situ hybridization. Environ Microbiol 7:281–293CrossRefPubMedGoogle Scholar
  2. Chen J, Zhou ZC, Gu J-D (2014) Occurrence and diversity of nitrite-dependent anaerobic methane oxidation bacteria in the sediments of the South China Sea revealed by amplification of both 16S rRNA and pmoA genes. Appl Microbiol Biotechnol 98:5685–5696CrossRefPubMedGoogle Scholar
  3. Chen J, Jiang XW, Gu J-D (2015a) Existence of novel phylotypes of nitrite-dependent anaerobic methane-oxidizing bacteria in surface and subsurface sediments of the South China Sea. Geomicrobiol J 32:1–9CrossRefGoogle Scholar
  4. Chen J, Zhou ZC, Gu J-D (2015b) Complex community of nitrite-dependent anaerobic methane oxidation bacteria in coastal sediments of the Mai Po wetland by PCR amplification of both 16S rRNA and pmoA genes. Appl Microbiol Biotechnol 99:1463–1473CrossRefPubMedGoogle Scholar
  5. Deutzmann JS, Schink B (2011) Anaerobic oxidation of methane in sediments of Lake Constance, an oligotrophic freshwater Lake. Appl Environ Microbiol 77:4429–4436CrossRefPubMedPubMedCentralGoogle Scholar
  6. Deutzmann JS, Stief P, Brandes J, Schink B (2014) Anaerobic methane oxidation coupled to denitrification is the dominant methane sink in a deep lake. Proc Natl Acad Sci U S A 111:18273–18278CrossRefPubMedPubMedCentralGoogle Scholar
  7. Ding J, Fu L, Ding ZW, Lu YZ, Cheng SH, Zeng RJ (2016) Environmental evaluation of coexistence of denitrifying anaerobic methane-oxidizing archaea and bacteria in a paddy field. Appl Microbiol Biotechnol 100:439–446CrossRefPubMedGoogle Scholar
  8. Doumenq P, Acquaviva M, Asia L, Durbec JP, Le Dréau Y, Mille G, Bertrand JC (1999) Changes in fatty acids of Pseudomonas nautica, a marine denitrifying bacterium, in response to n-eicosane as carbon source and various culture conditions. FEMS Microbiol Ecol 28:151–161CrossRefGoogle Scholar
  9. Ettwig KF, Shima S, van de Pas-Schoonen KT, Kahnt J, Medema MH, op den Camp HJM, Jetten MSM, Strous M (2008) Denitrifying bacteria anaerobically oxidize methane in the absence of archaea. Environ Microbiol 10:3164–3173CrossRefPubMedGoogle Scholar
  10. Ettwig KF, van Alen T, van de Pas-Schoonen KT, Jetten MSM, Strous M (2009) Enrichment and molecular detection of denitrifying methanotrophic bacteria of the NC10 phylum. Appl Environ Microbiol 75:3656–3662CrossRefPubMedPubMedCentralGoogle Scholar
  11. Ettwig KF, Butler MK, Le Paslier D, Pelletier E, Mangenot S, Kuypers MM, Schreiber F, Dutilh BE, Zedelius J, de Beer D, Gloerich J, Wessels HJ, van Alen T, Luesken F, Wu ML, van de Pas-Schoonen KT, Op den Camp HJ, Janssen-Megens EM, Francoijs KJ, Stunnenberg H, Weissenbach J, Jetten MS, Strous M (2010) Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464:543–548CrossRefPubMedGoogle Scholar
  12. Ettwig KF, Speth DR, Reimann J, Wu ML, Jetten MS, Keltjens JT (2012a) Bacterial oxygen production in the dark. Front Microbiol 3:273CrossRefPubMedPubMedCentralGoogle Scholar
  13. Ettwig KF, Speth DR, Reimann J, Wu ML, Jetten MSM, Keltjens JT (2012b) Bacterial oxygen production in the dark. BBA-Bioenergetics 1817:S155–S155CrossRefGoogle Scholar
  14. Gao J, Luo X, Wu G, Peng Y (2013) Occurrence of nitrite-dependent anaerobic methane oxidizing bacteria from different soil and wastewater sludge. NCBI Genbank web http://www.ncbinlmnihgov/nuccore/ Accessed 17 April 2014
  15. Han P, Gu J-D (2013) A newly designed degenerate PCR primer based on pmoA gene for detection of nitrite-dependent anaerobic methane-oxidizing bacteria from different ecological niches. Appl Microbiol Biotechnol 97:10155–10162CrossRefPubMedGoogle Scholar
  16. Han P, Gu J-D (2015) Further analysis of anammox bacterial community structures along an anthropogenic nitrogen-input gradient from the riparian sediments of the Pearl River Delta to the deep-ocean sediments of the South China Sea. Geomicrobiolgy. Journal 32:789–798Google Scholar
  17. Haroon MF, Hu S, Shi Y, Imelfort M, Keller J, Hugenholtz P, Yuan Z, Tyson GW (2013) Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature 500:567–570CrossRefPubMedGoogle Scholar
  18. He Z, Geng S, Cai C, Liu S, Liu Y, Pan Y, Lou L, Zheng P, Xu X, Hu B (2015a) Anaerobic oxidation of methane coupled to nitrite reduction by halophilic marine NC10 bacteria. Appl Environ Microbiol 81:5538–5545CrossRefPubMedPubMedCentralGoogle Scholar
  19. He ZF, Geng S, Shen LD, Lou LP, Zheng P, Xu XH, Hu BL (2015b) The short- and long-term effects of environmental conditions on anaerobic methane oxidation coupled to nitrite reduction. Water Res 68:554–562CrossRefPubMedGoogle Scholar
  20. Hill AR (1979) Denitrification in the nitrogen budget of a river ecosystem. Nature 281:291–292CrossRefGoogle Scholar
  21. Ho A, Vlaeminck SE, Ettwig KF, Schneider B, Frenzel P, Boon N (2013) Revisiting methanotrophic communities in sewage treatment plants. Appl Environ Microbiol 79:2841–2846CrossRefPubMedPubMedCentralGoogle Scholar
  22. Holmes AJ, Costello A, Lidstrom ME, Murrell JC (1995) Evidence that particulate methane monooxygenase and ammonia monooxygenase may be evolutionarily related. FEMS Microbiol Lett 132:203–208CrossRefPubMedGoogle Scholar
  23. Hong YG, Li M, Cao HL, Gu J-D (2011) Residence of habitat-specific anammox bacteria in the deep-sea subsurface sediments of the South China Sea: analyses of marker Gene abundance with physical chemical parameters. Microb Ecol 62:36–47CrossRefPubMedPubMedCentralGoogle Scholar
  24. Hu SH, Zeng RJ, Burow LC, Lant P, Keller J, Yuan ZG (2009) Enrichment of denitrifying anaerobic methane oxidizing microorganisms. Env Microbiol Rep 1:377–384CrossRefGoogle Scholar
  25. Hu SH, Zeng RJ, Keller J, Lant PA, Yuan ZG (2011) Effect of nitrate and nitrite on the selection of microorganisms in the denitrifying anaerobic methane oxidation process. Env Microbiol Rep 3:315–319CrossRefGoogle Scholar
  26. Hu BL, Shen LD, Lian X, Zhu Q, Liu S, Huang Q, He ZF, Geng S, Cheng DQ, Lou LP, Xu XY, Zheng P, He YF (2014) Evidence for nitrite-dependent anaerobic methane oxidation as a previously overlooked microbial methane sink in wetlands. Proc Natl Acad Sci U S A 111:4495–4500CrossRefPubMedPubMedCentralGoogle Scholar
  27. Jarman SN (2004) Amplicon: software for designing PCR primers on aligned DNA sequences. Bioinformatics 20:1644–1645CrossRefPubMedGoogle Scholar
  28. Juretschko S, Timmermann G, Schmid M, Schleifer KH, Pommerening-Roser A, Koops HP, Wagner M (1998) Combined molecular and conventional analyses of nitrifying bacterium diversity in activated sludge: Nitrosococcus mobilis and Nitrospira-like bacteria as dominant populations. Appl Environ Microbiol 64:3042–3051PubMedPubMedCentralGoogle Scholar
  29. Keeney DR, Chen RL, Graetz DA (1971) Importance of denitrification and nitrate reduction in sediments to the nitrogen budgets of lakes. Nature 233:66–67CrossRefGoogle Scholar
  30. Kits KD, Klotz MG, Stein LY (2015) Methane oxidation coupled to nitrate reduction under hypoxia by the Gammaproteobacterium Methylomonas denitrificans, sp. nov. type strain FJG1. Environ Microbiol 17:3219–3232CrossRefPubMedGoogle Scholar
  31. Knowles R (2005) Denitrifiers associated with methanotrophs and their potential impact on the nitrogen cycle. Ecol Eng 24:441–446CrossRefGoogle Scholar
  32. Kojima H, Tsutsumi M, Ishikawa K, Iwata T, Mussmann M, Fukui M (2012) Distribution of putative denitrifying methane oxidizing bacteria in sediment of a freshwater lake, Lake Biwa. Syst Appl Microbiol 35:233–238CrossRefPubMedGoogle Scholar
  33. Kojima H, Tokizawa R, Kogure K, Kobayashi Y, Itoh M, Shiah FK, Okuda N, Fukui M (2014) Community structure of planktonic methane-oxidizing bacteria in a subtropical reservoir characterized by dominance of phylotype closely related to nitrite reducer. Scientific Reports 4:5728CrossRefPubMedPubMedCentralGoogle Scholar
  34. Kool DM, Zhu BL, Rijpstra WIC, Jetten MSM, Ettwig KF, Damste JSS (2012) Rare branched fatty acids characterize the lipid composition of the intra-aerobic methane oxidizer “Candidatus Methylomirabilis oxyfera”. Appl Environ Microbiol 78:8650–8656Google Scholar
  35. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York, pp. 115–175Google Scholar
  36. Li M, Cao HL, Hong YG, Gu J-D (2011) Seasonal dynamics of anammox bacteria in estuarial sediment of the Mai Po nature reserve revealed by analyzing the 16S rRNA and hydrazine oxidoreductase (hzo) genes. Microbes Environ 26:15–22CrossRefPubMedGoogle Scholar
  37. Liu Y, Zhang J, Zhao L, Li Y, Yang Y, Xie S (2015) Aerobic and nitrite-dependent methane-oxidizing microorganisms in sediments of freshwater lakes on the Yunnan plateau. Appl Microbiol Biotechnol 99:2371–2381CrossRefPubMedGoogle Scholar
  38. Londry KL, Jahnke LL, Des Marais DJ (2004) Stable carbon isotope ratios of lipid biomarkers of sulfate-reducing bacteria. Appl Environ Microbiol 70:745–751CrossRefPubMedPubMedCentralGoogle Scholar
  39. Lu YZ, Ding ZW, Ding J, Fu L, Zeng RJ (2015) Design and evaluation of universal 16S rRNA gene primers for high-throughput sequencing to simultaneously detect DAMO microbes and anammox bacteria. Water Res 87:385–394CrossRefPubMedGoogle Scholar
  40. Luesken FA, Sanchez J, van Alen TA, Sanabria J, Op den Camp HJM, Jetten MSM, Kartal B (2011a) Simultaneous nitrite-dependent anaerobic methane and ammonium oxidation processes. Appl Environ Microbiol 77:6802–6807CrossRefPubMedPubMedCentralGoogle Scholar
  41. Luesken FA, van Alen TA, van der Biezen E, Frijters C, Toonen G, Kampman C, Hendrickx TL, Zeeman G, Temmink H, Strous M, Op den Camp HJ, Jetten MS (2011b) Diversity and enrichment of nitrite-dependent anaerobic methane oxidizing bacteria from wastewater sludge. Appl Microbiol Biotechnol 92:845–854CrossRefPubMedPubMedCentralGoogle Scholar
  42. Luesken FA, Zhu BL, van Alen TA, Butler MK, Diaz MR, Song B, den Camp HJMO, Jetten MSM, Ettwig KF (2011c) pmoA primers for detection of anaerobic methanotrophs. Appl Environ Microbiol 77:3877–3880CrossRefPubMedPubMedCentralGoogle Scholar
  43. Luesken FA, Wu ML, Op den Camp HJ, Keltjens JT, Stunnenberg H, Francoijs KJ, Strous M, Jetten MS (2012) Effect of oxygen on the anaerobic methanotroph 'Candidatus Methylomirabilis oxyfera': kinetic and transcriptional analysis. Environ Microbiol 14:1024–1034CrossRefPubMedGoogle Scholar
  44. Masashi, H, Masafumi, K, Masato, K, Takashi, Y (2013) Enrichment of denitrifying anaerobic methane oxidizing microorganisms using nitrate or nitrite as electron acceptor. NCBI Genbank web http://wwwncbinlmnihgov/nuccore/ Accessed 17 April 2014Google Scholar
  45. Mascarelli AL (2010) Methane-eating microbes make their own oxygen. Nature. doi: 10.1038/news.2010.1146 Google Scholar
  46. Mason I (1977) Methane as a carbon source in biological denitrification. Journal of Water Pollution Control Federation 49:855–857Google Scholar
  47. McGarity JW (1961) Denitrification studies on some south Australian soils. Plant Soil 14:1–21CrossRefGoogle Scholar
  48. Meng H, Wang Y-F, Chan HW, Wu R-N, Gu J-D (2016) Co-occurrence of nitrite-dependent anaerobic ammonium and methane oxidation processes in subtropical acidic forest soils. Appl Microbiol Biotechnol. doi: 10.1007/s00253-016-7585-6 PubMedCentralGoogle Scholar
  49. Orcutt BN, Sylvan JB, Knab NJ, Edwards KJ (2011) Microbial ecology of the dark ocean above, at, and below the seafloor. Microbiol Mol Biol Rev 75:361–422CrossRefPubMedPubMedCentralGoogle Scholar
  50. Oremland RS (2010) Biogeochemistry: NO connection with methane. Nature 464:500–501CrossRefPubMedGoogle Scholar
  51. Raghoebarsing AA, Smolders AJ, Schmid MC, Rijpstra WI, Wolters-Arts M, Derksen J, Jetten MS, Schouten S, Sinninghe Damste JS, Lamers LP, Roelofs JG, Op den Camp HJ, Strous M (2005) Methanotrophic symbionts provide carbon for photosynthesis in peat bogs. Nature 436:1153–1156CrossRefPubMedGoogle Scholar
  52. Raghoebarsing AA, Pol A, van de Pas-Schoonen KT, Smolders AJP, Ettwig KF, Rijpstra WIC, Schouten S, Damste JSS, Op den Camp HJM, Jetten MSM, Strous M (2006) A microbial consortium couples anaerobic methane oxidation to denitrification. Nature 440:918–921CrossRefPubMedGoogle Scholar
  53. Rütters H, Sass H, Cypionka H, Rullkötter J (2002) Phospholipid analysis as a tool to study complex microbial communities in marine sediments. J Microbiol Meth 48:149–160CrossRefGoogle Scholar
  54. Shen LD, Liu S, Huang Q, Lian X, He ZF, Geng S, Jin RC, He YF, Lou LP, Xu XY, Zheng P, Hu BL (2014a) Evidence for the cooccurrence of nitrite-dependent anaerobic ammonium and methane oxidation processes in a flooded paddy field. Appl Environ Microbiol 80:7611–7619CrossRefPubMedPubMedCentralGoogle Scholar
  55. Shen LD, Liu S, Zhu Q, Li XY, Cai C, Cheng DQ, Lou LP, Xu XY, Zheng P, Hu BL (2014b) Distribution and diversity of nitrite-dependent anaerobic methane-oxidising bacteria in the sediments of the Qiantang River. Microb Ecol 67:341–349Google Scholar
  56. Shen LD, Zhu Q, Liu S, Du P, Zeng JN, Cheng DQ, Xu XY, Zheng P, Hu BL (2014c) Molecular evidence for nitrite-dependent anaerobic methane-oxidising bacteria in the Jiaojiang estuary of the East Sea (China). Appl Microbiol Biotechnol 98:5029–5038CrossRefGoogle Scholar
  57. Shen L, Liu S, He Z, Lian X, Huang Q, He Y, Lou L, Xu X, Zheng P, Hu B (2015a) Depth-specific distribution and importance of nitrite-dependent anaerobic ammonium and methane-oxidising bacteria in an urban wetland. Soil Bio Biochem 83:43–51CrossRefGoogle Scholar
  58. Shen LD, He ZF, Wu HS, Gao ZQ (2015b) Nitrite-dependent anaerobic methane-oxidising bacteria: unique microorganisms with special properties. Curr Microbiol 70:562–570CrossRefPubMedGoogle Scholar
  59. Shen LD, Huang Q, He ZF, Lian X, Liu S, He YF, Lou LP, Xu XY, Zheng P, Hu BL (2015c) Vertical distribution of nitrite-dependent anaerobic methane-oxidising bacteria in natural freshwater wetland soils. Appl Microbiol Biotechnol 99:349–357CrossRefPubMedGoogle Scholar
  60. Shen LD, Wu HS, Gao ZQ (2015d) Distribution and environmental significance of nitrite-dependent anaerobic methane-oxidising bacteria in natural ecosystems. Appl Microbiol Biotechnol 99:133–142CrossRefPubMedGoogle Scholar
  61. Shen LD, Wu HS, Gao ZQ, Li J, Liu X (2016) Presence of diverse Candidatus Methylomirabilis oxyfera-like bacteria of NC10 phylum in agricultural soils. J Appl Microbiol. doi: 10.1111/jam.13119 PubMedGoogle Scholar
  62. Simon J, Klotz MG (2013) Diversity and evolution of bioenergetic systems involved in microbial nitrogen compound transformations. Biochimica Biophysica Acta 1827:114–135CrossRefGoogle Scholar
  63. Sinninghe Damste JS, Rijpstra WI, Geenevasen JA, Strous M, Jetten MS (2005) Structural identification of ladderane and other membrane lipids of planctomycetes capable of anaerobic ammonium oxidation (anammox. FEBS J 272:4270–4283CrossRefPubMedGoogle Scholar
  64. Sittig M, Schlesner H (1993) Chemotaxonomic investigation of various prosthecate and/or budding bacteria. Syst Appl Microbiol 16:92–103CrossRefGoogle Scholar
  65. Strous M, Jetten MSM (2004) Anaerobic oxidation of methane and ammonium. Annu Rev Microbiol 58:99–117CrossRefPubMedGoogle Scholar
  66. van der Star WRL, Abma WR, Blommers D, Mulder JW, Tokutomi T, Strous M, Picioreanu C, Van Loosdrecht MCM (2007) Startup of reactors for anoxic ammonium oxidation: experiences from the first full-scale anammox reactor in Rotterdam. Water Res 41:4149–4163CrossRefPubMedGoogle Scholar
  67. Wang Y, Zhu G, Harhangi HR, Zhu B, Jetten MS, Yin C, Op den Camp HJ (2012) Co-occurrence and distribution of nitrite-dependent anaerobic ammonium and methane oxidizing bacteria in a paddy soil. FEMS Microbiol Lett 336:79–88CrossRefPubMedGoogle Scholar
  68. Wang Y, Huang P, Ye F, Jiang Y, Song L, Op den Camp HJ, Zhu G, Wu S (2016) Nitrite-dependent anaerobic methane oxidizing bacteria along the water level fluctuation zone of the three gorges reservoir. Appl Microbiol Biotechnol 100:1977–1986CrossRefPubMedGoogle Scholar
  69. Wu ML, Ettwig KF, Jetten MS, Strous M, Keltjens JT, van Niftrik L (2011) A new intra-aerobic metabolism in the nitrite-dependent anaerobic methane-oxidizing bacterium Candidatus ‘Methylomirabilis oxyfera’. Biochem Soc Trans 39:243–248Google Scholar
  70. Yan P, Li M, Wei G, Li H, Gao Z (2015) Molecular fingerprint and dominant environmental factors of nitrite-dependent anaerobic methane oxidation bacteria in sediments from the Yellow River estuary, China. PLoS One 10:e0137996CrossRefPubMedPubMedCentralGoogle Scholar
  71. Yang J, Jiang HC, Wu G, Hou WG, Sun YJ, Lai ZP, Dong HL (2012) Co-occurrence of nitrite-dependent anaerobic methane oxidizing and anaerobic ammonia oxidizing bacteria in two Qinghai-Tibetan saline lakes. Front Earth Sci 6:383–391CrossRefGoogle Scholar
  72. Yoon JH, Lee MH, Kang SJ, Oh TK (2007) Marinobacter salicampi sp. nov., isolated from a marine solar saltern in Korea. Int J Syst Evol Microbiol 57:2102–2105CrossRefPubMedGoogle Scholar
  73. Yu YN, Breitbart M, McNairnie P, Rohwer F (2006) FastGroupII: a web-based bioinformatics platform for analyses of large 16S rDNA libraries. BMC Bioinformatics 7:57CrossRefPubMedPubMedCentralGoogle Scholar
  74. Zhang CL, Li Y, Ye Q, Fong J, Peacock AD, Blunt E, Fang J, Lovely DR, White DC (2003) Carbon isotope signatures of fatty acids in Geobacter metallireducens and Shewanella algae. Chem Geol 195:17–28CrossRefGoogle Scholar
  75. Zhou L, Wang Y, Long X, Guo J, Zhu G (2014) High abundance and diversity of nitrite-dependent anaerobic methane-oxidizing bacteria in a paddy field profile. FEMS Microbiol Lett 360:33–41CrossRefPubMedGoogle Scholar
  76. Zhu G, Jetten MS, Kuschk P, Ettwig KF, Yin C (2010) Potential roles of anaerobic ammonium and methane oxidation in the nitrogen cycle of wetland ecosystems. Appl Microbiol Biotechnol 86:1043–1055CrossRefPubMedGoogle Scholar
  77. Zhu B, Sanchez J, van Alen TA, Sanabria J, Jetten MS, Ettwig KF, Kartal B (2011) Combined anaerobic ammonium and methane oxidation for nitrogen and methane removal. Biochem Soc Trans 39:1822–1825CrossRefPubMedGoogle Scholar
  78. Zhu BL, van Dijk G, Fritz C, Smolders AJP, Pol A, Jetten MSM, Ettwig KF (2012) Anaerobic oxidization of methane in a Minerotrophic peatland: enrichment of nitrite-dependent methane-oxidizing bacteria. Appl Environ Microbiol 78:8657–8665CrossRefPubMedPubMedCentralGoogle Scholar
  79. Zhu Q, Shen LD, Hu BL, Lou LP, Cheng DQ (2013) Molecular detection of denitrifying anaerobic oxidizing bacteria in the sediment of West Lake, Hangzhou. Acta Sci Circumst 33:1321–1325Google Scholar
  80. Zhu G, Zhou L, Wang Y, Wang S, Guo J, Long XE, Sun X, Jiang B, Hou Q, Jetten MS, Yin C (2015) Biogeographical distribution of denitrifying anaerobic methane oxidizing bacteria in Chinese wetland ecosystems. Environ Microbiol Rep 7:128–138CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, Faculty of ScienceThe University of Hong KongHong KongPeople’s Republic of China
  2. 2.School of Life SciencesUniversity of WarwickCoventryUK
  3. 3.School of Environment and Natural Resources, College of Food, Agricultural, and Environmental SciencesThe Ohio State UniversityColumbusUSA
  4. 4.Institute of Environmental EngineeringNational Chiao Tung UniversityHsinchuTaiwan

Personalised recommendations