Advertisement

Applied Microbiology and Biotechnology

, Volume 100, Issue 22, pp 9423–9437 | Cite as

Biotechnological production of enantiomerically pure d-lactic acid

  • Silvia Klotz
  • Norman Kaufmann
  • Anja KuenzEmail author
  • Ulf Prüße
Mini-Review

Abstract

The fermentation process of l-lactic acid is well known. Little importance was attached to d-lactic acid, but in the past 10 years, d-lactic acid gained significantly in importance. d-Lactic acid is an interesting precursor for manufacturing heat-resistant polylactic acid (PLA) bioplastics which can be widely used, for example as packaging material, coatings, for textiles or in the automotive industry.

This review provides a comprehensive overview of the most recent developments, including a spectrum of studied microorganisms and their capabilities for the production of d-lactic acid. Additionally, the technological achievements in biotechnological d-lactic acid production including fermentation techniques like fed batch, simultaneous saccharification, and fermentation and continuous techniques are presented. Attention is also turned to suitable alternative substrates and their applicability in fermentation processes. Furthermore, advantages and disadvantages of product recovery and purification are discussed. Economic aspects of PLA are pointed out, and the present industrial producers of lactic acid are briefly introduced.

Keywords

d-Lactic acid Wild-type strains Genetically engineered strains Fermentation strategies Renewable resources Product recovery 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights and informed consent

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Abdel-Rahman MA, Tashiro Y, Sonomoto K (2011a) Lactic acid production from lignocellulose-derived sugars using lactic acid bacteria: overview and limits. J Biotechnol 156(4):286–301. doi: 10.1016/j.jbiotec.2011.06.017 PubMedCrossRefGoogle Scholar
  2. Abdel-Rahman MA, Tashiro Y, Zendo T, Hanada K, Shibata K, Sonomoto K (2011b) Efficient homofermentative L-(+)-lactic acid production from xylose by a novel lactic acid bacterium, Enterococcus mundtii QU 25. Appl Environ Microb 77(5):1892–1895. doi: 10.1128/Aem.02076-10 CrossRefGoogle Scholar
  3. Abdel-Rahman MA, Tashiro Y, Sonomoto K (2013) Recent advances in lactic acid production by microbial fermentation processes. Biotechnol Adv 31(6):877–902. doi: 10.1016/j.biotechadv.2013.04.002 PubMedCrossRefGoogle Scholar
  4. Adachi E, Torigoe M, Sugiyama M, Nikawa J-I, Shimizu K (1998) Modification of metabolic pathways of Saccharomyces cerevisiae by the expression of lactate dehydrogenase and deletion of pyruvate decarboxylase genes for the lactic acid fermentation at low pH value. J Ferment Bioeng 86(3):284–289. doi: 10.1016/S0922-338X(98)80131-1 CrossRefGoogle Scholar
  5. Assavasirijinda N, Ge DY, Yu B, Xue YF, Ma YH (2016) Efficient fermentative production of polymer-grade D-lactate by an engineered alkaliphilic Bacillus sp strain under non-sterile conditions. Microb Cell Factories 15(3). doi: 10.1186/s12934-015-0408-0
  6. Auras RA, Singh SP, Singh JJ (2005) Evaluation of oriented poly(lactide) polymers vs. existing PET and oriented PS for fresh food service containers. Packag Technol Sci 18(4):207–216. doi: 10.1002/pts.692 CrossRefGoogle Scholar
  7. Baek SH, Kwon EY, Kim YH, Hahn JS (2016) Metabolic engineering and adaptive evolution for efficient production of D-lactic acid in Saccharomyces cerevisiae. Appl Microbiol Biot 100(6):2737–2748. doi: 10.1007/s00253-015-7174-0 CrossRefGoogle Scholar
  8. Bai ZZ, Gao Z, Sun JF, Wu B, He BF (2016) D-lactic acid production by Sporolactobacillus inulinus YBS1-5 with simultaneous utilization of cottonseed meal and corncob residue. Bioresour Technol 207:346–352. doi: 10.1016/j.biortech.2016.02.007 PubMedCrossRefGoogle Scholar
  9. Basso TO, Gomes FS, Lopes ML, de Amorim HV, Eggleston G, Basso LC (2014) Homo- and heterofermentative Lactobacilli differently affect sugarcane-based fuel ethanol fermentation. Anton Leeuw Int J G 105(1):169–177. doi: 10.1007/s10482-013-0063-6 CrossRefGoogle Scholar
  10. Bobillo M, Marshall VM (1991) Effect of salt and culture aeration on lactate and acetate production by Lactobacillus plantarum. Food Microbiol 8:153–160CrossRefGoogle Scholar
  11. Buyze G, Van den Hamer CJA, De Haan PG (1957) Correlation between hexose-monophosphate shunt, glycolytic system and fermentation-type in Lactobacilli. Antonie Van Leeuwenhoek 23(1):345–350. doi: 10.1007/bf02545886 PubMedCrossRefGoogle Scholar
  12. Buzatu P, Zsirai T, Aerts P, Judd SJ (2012) Permeability and clogging in an immersed hollow fibre membrane bioreactor. J Membr Sci 421:342–348. doi: 10.1016/j.memsci.2012.07.039 CrossRefGoogle Scholar
  13. Calabia BP, Tokiwa Y (2007) Production of D-lactic acid from sugarcane molasses, sugarcane juice and sugar beet juice by Lactobacillus delbrueckii. Biotechnol Lett 29(9):1329–1332. doi: 10.1007/s10529-007-9408-4 PubMedCrossRefGoogle Scholar
  14. Cellulac (2013) Cellulac–Corporate Presentation. http://cellulac.co.uk/en/wp-content/uploads/2013/02/Cellulac-Presentation.pdf. Accessed 15 January 2015
  15. Cellulac (2014) Lactic acid from lactose whey in world first continuous production runs. http://cellulac.co.uk/en/etiam-cursus-leo-vel-metus/lactic-acid-from-lactose-whey-in-world-first-continuous-production-runs/Accessed 7 June 2016
  16. Cellulac (2016) Cellulac - Biochemicals. http://cellulac.co.uk/en/technology/Accessed 6 June 2016
  17. Chae HS, Lee SH, Lee JH, Park SJ, Lee PC (2013) Use of a novel Escherichia coli-Leuconostoc shuttle vector for metabolic engineering of Leuconostoc citreum to overproduce D-lactate. Appl Environ Microb 79(5):1428–1435. doi: 10.1128/Aem.03291-12 CrossRefGoogle Scholar
  18. Chang DE, Jung HC, Rhee JS, Pan JG (1999) Homofermentative production of D- or L-lactate in metabolically engineered Escherichia coli RR1. Appl Environ Microb 65(4):1384–1389Google Scholar
  19. Chen CC, Ju LK (2002) Coupled lactic acid fermentation and adsorption. Appl Microbiol Biot 59(2–3):170–174. doi: 10.1007/s00253-002-1016-6 CrossRefGoogle Scholar
  20. Chen CY, Yeh KL, Aisyah R, Lee DJ, Chang JS (2011) Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresour Technol 102(1):71–81. doi: 10.1016/j.biortech.2010.06.159 PubMedCrossRefGoogle Scholar
  21. Coelho LF, de Lima CJB, Bernardo MP, Contiero J (2011) D(−)-lactic acid production by Leuconostoc mesenteroides B512 using different carbon and nitrogen sources. Appl Biochem Biotech 164(7):1160–1171. doi: 10.1007/s12010-011-9202-6 CrossRefGoogle Scholar
  22. Corbion-Purac (2014) FKuR and Corbion Purac in partnership to develop heat resistant PLA compounds.http://www.corbion.com/media/press-releases?newsId=1847680. Accessed 15 January 2015
  23. Curk MC, Peladan F, Hubert JC (1993) Characterization of Lactobacilli isolated in breweries. Lait 73(2):215–231CrossRefGoogle Scholar
  24. Datta R, Henry M (2006) Lactic acid: recent advances in products, processes and technologies - a review. J Chem Technol Biot 81(7):1119–1129. doi: 10.1002/Jctb.1486 CrossRefGoogle Scholar
  25. Datta R, Tsai SP, Bonsignore P, Moon SH, Frank JR (1995) Technological and economic-potential of poly(lactic acid) and lactic-acid derivatives. FEMS Microbiol Rev 16(2–3):221–231CrossRefGoogle Scholar
  26. Demirci A, Pometto AL (1992) Enhanced production of D(−)-lactic acid by mutants of Lactobacillus delbrueckii ATCC 9649. J Ind Microbiol 11(1):23–28. doi: 10.1007/Bf01583728 CrossRefGoogle Scholar
  27. E4tech R-C, WUR (2015) From the Sugar Platform to biofuels and biochemicals. Final report for the European Commission. contract No. ENER/C2/423–2012/SI2.673791, https://ec.europa.eu/energy/sites/ener/files/documents/EC%20Sugar%20Platform%20final%20report.pdf. Accessed 29. Apr. 2016
  28. Elsden SR, Peel JL (1958) Metabolism of carbohydrates and related compounds. Annu Rev Microbiol 12(1):145–202. doi: 10.1146/annurev.mi.12.100158.001045 PubMedCrossRefGoogle Scholar
  29. European Parliament and the Council (2003) Regulation (EC) No 1829/2003 on genetically modified food and feed. http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32003R1829&from=en. Accessed 16 January 2015
  30. European-Bioplastics (2015) Institute for Bioplastics and Biocomposites, nova-Institute. www.bio-based.eu/markets and www.downloads.ifbb-hannover.de
  31. Eyal AM, Bressler E (1993) Industrial separation of carboxylic and amino-acids by liquid membranes - applicability, process considerations, and potential advantages. Biotechnol Bioeng 41(3):287–295. doi: 10.1002/bit.260410302 PubMedCrossRefGoogle Scholar
  32. Feng XJ, Ding YM, Xian M, Xu X, Zhang RB, Zhao G (2014) Production of optically pure D-lactate from glycerol by engineered Klebsiella pneumoniae strain. Bioresour Technol 172:269–275. doi: 10.1016/j.biortech.2014.09.074 PubMedCrossRefGoogle Scholar
  33. Fukui S, Oi A, Obayashi A, Kitahara K (1957) Studies on the pentose metabolism by microorganism 1. A new type-lactic acid fermention of pentoses by lactic acid bacteria. J Gen Appl Microbiol 3(4):258–268. doi: 10.2323/jgam.3.258 CrossRefGoogle Scholar
  34. Fukushima K, Sogo K, Miura S, Kimura Y (2004) Production of D-lactic acid by bacterial fermentation of rice starch. Macromol Biosci 4(11):1021–1027. doi: 10.1002/mabi.200400080 PubMedCrossRefGoogle Scholar
  35. Futerro (2010) Futerro inaugurates bioplastics pilot unit (PLA), a first in Europe. Futerro News. http://www.futerro.com/documents/futerropressrelease20100416.pdf. Accessed 15 January 2015
  36. Ganesh I, Ravikumar S, Hong SH (2012) Metabolically engineered Escherichia coli as a tool for the production of bioenergy and biochemicals from glycerol. Biotechnol Bioprocess Eng 17(4):671–678. doi: 10.1007/s12257-011-0446-3 CrossRefGoogle Scholar
  37. Gao QA, Liu FB, Zhang TC, Zhang JA, Jia SR, Yu CY, Jiang KY, Gao NF (2010) The role of lactic acid adsorption by ion exchange chromatography. PLoS One 5(11). doi: 10.1371/journal.pone.0013948
  38. Garlotta D (2001) A literature review of poly(lactic acid). J Polym Environ 9(2):63–84 . doi: 10.1023/A:1020200822435doi: Unsp 1566-2543/01/0400-0063/0CrossRefGoogle Scholar
  39. Garvie EI (1980) Bacterial lactate dehydrogenases. Microbiol Rev 44(1):106–139PubMedPubMedCentralGoogle Scholar
  40. Ghaffar T, Irshad M, Anwar Z, Aqil T, Zulifqar Z, Tariq A, Kamran M, Ehsan N, Mehmood S (2014) Recent trends in lactic acid biotechnology: a brief review on production to purification. J Radiat Res Appl Sci 7(2):222–229. doi: 10.1016/j.jrras.2014.03.002 CrossRefGoogle Scholar
  41. Giraffa G, Chanishvili N, Widyastuti Y (2010) Importance of Lactobacilli in food and feed biotechnology. Res Microbiol 161(6):480–487. doi: 10.1016/j.resmic.2010.03.001 PubMedCrossRefGoogle Scholar
  42. Groot W, van Krieken J, Sliekersl O, de Vos S (2010) Production and purification of lactic acid and lactide poly(lactic acid). Wiley, Inc., pp 1–18Google Scholar
  43. Habova V, Melzoch K, Rychtera M, Sekavova B (2004) Electrodialysis as a useful technique for lactic acid separation from a model solution and a fermentation broth. Desalination 162(1–3):361–372. doi: 10.1016/S0011-9164(04)00070-0 CrossRefGoogle Scholar
  44. Hama S, Mizuno S, Kihara M, Tanaka T, Ogino C, Noda H, Kondo A (2015) Production of D-lactic acid from hardwood pulp by mechanical milling followed by simultaneous saccharification and fermentation using metabolically engineered Lactobacillus plantarum. Bioresour Technol 187:167–172. doi: 10.1016/j.biortech.2015.03.106 PubMedCrossRefGoogle Scholar
  45. Heriban V, Škára J, Šturdík E, Ilavský J (1993) Isolation of free lactic acid using electrodialysis. Biotechnol Tech 7(1):63–68. doi: 10.1007/bf00151092 CrossRefGoogle Scholar
  46. Hirayama S, Ueda R (2004) Production of optically pure D-lactic acid by Nannochlorum sp. 26 A4. Appl Biochem Biotechnol 119(1):71–78PubMedCrossRefGoogle Scholar
  47. Hofvendahl K, Hahn-Hagerdal B (2000) Factors affecting the fermentative lactic acid production from renewable resources. Enzyme Microb Tech 26(2–4):87–107. doi: 10.1016/S0141-0229(99)00155-6 CrossRefGoogle Scholar
  48. Hongo M, Nomura Y, Iwahara M (1986) Novel method of lactic-acid production by electrodialysis fermentation. Appl Environ Microb 52(2):314–319Google Scholar
  49. Horecker BL, Gibbs M, Klenow H, Smyrniotis PZ (1954) The mechanism of pentose phosphate conversion to hexose monophosphate. I. With a liver enzyme preparation. J Biol Chem 207(1):393–403PubMedGoogle Scholar
  50. Huang HJ, Yang ST, Ramey DE (2004) A hollow-fiber membrane extraction process for recovery and separation of lactic acid from aqueous solution. Appl Biochem Biotech 113:671–688CrossRefGoogle Scholar
  51. Ikada Y, Jamshidi K, Tsuji H, Hyon SH (1987) Stereocomplex formation between enantiomeric poly(lactides). Macromolecules 20(4):904–906CrossRefGoogle Scholar
  52. Ishida N, Suzuki T, Tokuhiro K, Nagamori E, Onishi T, Saitoh S, Kitamoto K, Takahashi H (2006) D-lactic acid production by metabolically engineered Saccharomyces cerevisiae. J Biosci Bioeng 101(2):172–177. doi: 10.1263/Jbb.101.172 PubMedCrossRefGoogle Scholar
  53. Iyer PV, Lee YY (1999) Simultaneous saccharification and extractive fermentation of lignocellulosic materials into lactic acid in a two-zone fermenter-extractor system. Appl Biochem Biotech 77-9:409–419CrossRefGoogle Scholar
  54. Jia XQ, Liu P, Li S, Li SS, Wen JP (2011) D-lactic acid production by a genetically engineered strain Corynebacterium glutamicum. World J Microb Biot 27(9):2117–2124. doi: 10.1007/s11274-011-0675-9 CrossRefGoogle Scholar
  55. John RP, Nampoothiri KM, Pandey A (2007) Fermentative production of lactic acid from biomass: an overview on process developments and future perspectives. Appl Microbiol Biot 74(3):524–534. doi: 10.1007/s00253-006-0779-6 CrossRefGoogle Scholar
  56. Kandler O (1983) Carbohydrate-metabolism in lactic-acid bacteria. A Van Leeuw J Microb 49(3):209–224. doi: 10.1007/Bf00399499 CrossRefGoogle Scholar
  57. Kangming T (2012) High-efficiency conversion of glycerol to D-lactic acid with metabolically engineered Escherichia coli. Afr J Biotechnol 11(21). doi: 10.5897/ajb11.3464
  58. Keil KHD, Greiner UD, Engelhardt FD, Kühlein KD, Hess G, Keller RD, Schlingmann MD (1985) Isolierung von enzymatisch erzeugten Carbonsäuren. EP 0135728:A1Google Scholar
  59. Kertes AS, King CJ (1986) Extraction chemistry of fermentation product carboxylic-acids. Biotechnol Bioeng 28(2):269–282. doi: 10.1002/bit.260280217 PubMedCrossRefGoogle Scholar
  60. Li Y, Wang L, Ju J, Yu B, Ma Y (2013) Efficient production of polymer-grade D-lactate by Sporolactobacillus laevolacticus DSM442 with agricultural waste cottonseed as the sole nitrogen source. Bioresour Technol 142(0):186–191. doi: 10.1016/j.biortech.2013.04.124 PubMedCrossRefGoogle Scholar
  61. Li C, Tao F, Ni J, Wang Y, Yao F, Xu P (2015) Enhancing the light-driven production of D-lactate by engineering Cyanobacterium using a combinational strategy. Sci Rep-Uk 5. doi: 10.1038/srep09777
  62. Li QX, Bin Hudari MS, Wu JC (2016) Production of optically pure D-lactic acid by the combined use of Weissella sp S26 and Bacillus sp ADS3. Appl Biochem Biotech 178(2):285–293. doi: 10.1007/s12010-015-1871-0 CrossRefGoogle Scholar
  63. Liu Y, Gao W, Zhao X, Wang JH, Garza E, Manow R, Zhou SD (2014) Pilot scale demonstration of D-lactic acid fermentation facilitated by Ca(OH)(2) using a metabolically engineered Escherichia coli. Bioresour Technol 169:559–565. doi: 10.1016/j.biortech.2014.06.056 PubMedCrossRefGoogle Scholar
  64. Lopez-Garzon CS, Straathof AJJ (2014) Recovery of carboxylic acids produced by fermentation. Biotechnol Adv 32(5):873–904. doi: 10.1016/j.biotechadv.2014.04.002 PubMedCrossRefGoogle Scholar
  65. Lu ZD, Lu MB, He F, Yu LJ (2009) An economical approach for D-lactic acid production utilizing unpolished rice from aging paddy as major nutrient source. Bioresour Technol 100(6):2026–2031. doi: 10.1016/j.biortech.2008.10.015 PubMedCrossRefGoogle Scholar
  66. Lu HY, Zhao X, Wang YZ, Ding XR, Wang JH, Garza E, Manow R, Iverson A, Zhou SD (2016) Enhancement of D-lactic acid production from a mixed glucose and xylose substrate by the Escherichia coli strain JH15 devoid of the glucose effect. BMC Biotechnol 16. doi: 10.1186/s12896-016-0248-y
  67. Mazumdar S, Clomburg JM, Gonzalez R (2010) Escherichia coli Strains engineered for homofermentative production of D-lactic acid from glycerol. Appl Environ Microb 76(13):4327–4336. doi: 10.1128/Aem.00664-10 CrossRefGoogle Scholar
  68. Meyerhof O (1948) New investigations on enzymatic glycolysis and phosphorylation. Experientia 4(5):169–176. doi: 10.1007/bf02153873 PubMedCrossRefGoogle Scholar
  69. Mimitsuka T, Na K, Morita K, Sawai H, Minegishi S, Henmi M, Yamada K, Shimizu S, Yonehara T (2012) A membrane-integrated fermentation reactor system: its effects in reducing the amount of sub-raw materials for D-lactic acid continuous fermentation by Sporolactobacillus laevolacticus. Biosci Biotech Bioch 76(1):67–72. doi: 10.1271/bbb.110499 CrossRefGoogle Scholar
  70. Myriant-Corporation (2011) Myriant produces succinic acid and lactic acid from non-food cellulosic feedstocks. http://www.myriant.com/media/press-releases/myriant-produces-succinic-acid-and-lactic-acid-from-non-food-cellulosic-feedstocks.cfm. Accessed 15 January 2015
  71. Nakano S, Ugwu CU, Tokiwa Y (2012) Efficient production of D-(−)-lactic acid from broken rice by Lactobacillus delbrueckii using Ca(OH)2 as a neutralizing agent. Bioresour Technol 104:791–794. doi: 10.1016/j.biortech.2011.10.017 PubMedCrossRefGoogle Scholar
  72. Nancib A, Nancib N, Meziane-Cherif D, Boubendir A, Fick M, Boudrant J (2005) Joint effect of nitrogen sources and B vitamin supplementation of date juice on lactic acid production by Lactobacillus casei subsp rhamnosus. Bioresour Technol 96(1):63–67. doi: 10.1016/j.biortech.2003.09.018 PubMedCrossRefGoogle Scholar
  73. National STEM Centre (2011) Lactic acid. National Non-Food Crops Centre. http://www.nationalstemcentre.org.uk/dl/ce274003bba8e131e0b7f4d040691f2b6156fa57/14765-lactic_acid.pdf. Accessed 16 January 2015
  74. NatureWorks (2016) NatureWorks introduces its next generation polymer grade lactide. http://www.natureworksllc.com/News-and-Events/Press-Releases/2013/10-24-13-next-generation-polymer-grade-ingeo-lactide. Accessed 1 July 2016
  75. Nguyen CM, Kim JS, Song JK, Choi GJ, Choi YH, Jang KS, Kim JC (2012) D-lactic acid production from dry biomass of Hydrodictyon reticulatum by simultaneous saccharification and co-fermentation using Lactobacillus coryniformis subsp torquens. Biotechnol Lett 34(12):2235–2240. doi: 10.1007/s10529-012-1023-3 PubMedPubMedCentralCrossRefGoogle Scholar
  76. Nguyen CM, Choi GJ, Choi YH, Jang KS, Kim JC (2013a) D- and L-lactic acid production from fresh sweet potato through simultaneous saccharification and fermentation. Biochem Eng J 81:40–46. doi: 10.1016/j.bej.2013.10.003 CrossRefGoogle Scholar
  77. Nguyen CM, Kim JS, Nguyen TN, Kim SK, Choi GJ, Choi YH, Jang KS, Kim JC (2013b) Production of L- and D-lactic acid from waste Curcuma longa biomass through simultaneous saccharification and cofermentation. Bioresour Technol 146:35–43. doi: 10.1016/j.biortech.2013.07.035 PubMedCrossRefGoogle Scholar
  78. Okano K, Yoshida S, Tanaka T, Ogino C, Fukuda H, Kondo A (2009a) Homo-D-lactic acid fermentation from arabinose by redirection of the phosphoketolase pathway to the pentose phosphate pathway in L-lactate dehydrogenase gene-deficient Lactobacillus plantarum. Appl Environ Microb 75(15):5175–5178. doi: 10.1128/Aem.00573-09 CrossRefGoogle Scholar
  79. Okano K, Yoshida S, Yamada R, Tanaka T, Ogino C, Fukuda H, Kondo A (2009b) Improved production of homo-D-lactic acid via xylose fermentation by introduction of xylose assimilation genes and redirection of the phosphoketolase pathway to the pentose phosphate pathway in L-lactate dehydrogenase gene-deficient Lactobacillus plantarum. Appl Environ Microb 75(24):7858–7861. doi: 10.1128/Aem.01692-09 CrossRefGoogle Scholar
  80. Okano K, Tanaka T, Ogino C, Fukuda H, Kondo A (2010) Biotechnological production of enantiomeric pure lactic acid from renewable resources: recent achievements, perspectives, and limits. Appl Microbiol Biot 85(3):413–423. doi: 10.1007/s00253-009-2280-5 CrossRefGoogle Scholar
  81. Okino S, Suda M, Fujikura K, Inui M, Yukawa H (2008) Production of D-lactic acid by Corynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biot 78(3):449–454. doi: 10.1007/s00253-007-1336-7 CrossRefGoogle Scholar
  82. Ou MS, Awasthi D, Nieves I, Wang L, Erickson J, Vermerris W, Ingram LO, Shanmugam KT (2016) Sweet sorghum juice and bagasse as feedstocks for the production of optically pure lactic acid by native and engineered Bacillus coagulans strains. Bioenerg Res 9(1):123–131. doi: 10.1007/s12155-015-9670-6 CrossRefGoogle Scholar
  83. Petersen K, Nielsen PV, Bertelsen G, Lawther M, Olsen MB, Nilsson NH, Mortensen G (1999) Potential of biobased materials for food packaging. Trends Food Sci Tech 10(2):52–68. doi: 10.1016/S0924-2244(99)00019-9 CrossRefGoogle Scholar
  84. Reddy Tadi SR, EVRA, Limaye AM, Sivaprakasam S (2015) Enhanced production of optically pure D (−) lactic acid from nutritionally rich Borassus flabellifer sugar and whey protein hydrolysate based fermentation medium. Biotechnol Appl Biochem doi. doi: 10.1002/bab.1470 Google Scholar
  85. Sangproo M, Polyiam P, Jantama SS, Kanchanatawee S, Jantama K (2012) Metabolic engineering of Klebsiella oxytoca M5a1 to produce optically pure D-lactate in mineral salts medium. Bioresour Technol 119:191–198. doi: 10.1016/j.biortech.2012.05.114 PubMedCrossRefGoogle Scholar
  86. Shen L, Haufe J, Patel MK (2009) Product overview and market projection of emerging bio-based plastics. http://www.uu.nl/SiteCollectionImages/IMEW/Copernicus/Reports/PROBIP2009 Final June 2009 revised in November 09.pdf. Accessed 16 January 2015
  87. Singhvi M, Joshi D, Adsul M, Varma A, Gokhale D (2010) D-(−)-lactic acid production from cellobiose and cellulose by Lactobacillus lactis mutant RM2-24. Green Chem 12(6):1106–1109. doi: 10.1039/b925975a CrossRefGoogle Scholar
  88. Sun J, Wang Y, Wu B, Bai Z, He B (2015) Enhanced production of D-lactic acid by Sporolactobacillus sp.Y2–8 mutant generated by atmospheric and room temperature plasma. Biotechnol Appl Bioc 62(2):287–292. doi: 10.1002/bab.1267 CrossRefGoogle Scholar
  89. Tanaka T, Hoshina M, Tanabe S, Sakai K, Ohtsubo S, Taniguchi M (2006) Production of D-lactic acid from defatted rice bran by simultaneous saccharification and fermentation. Bioresour Technol 97(2):211–217. doi: 10.1016/j.biortech.2005.02.025 PubMedCrossRefGoogle Scholar
  90. Tashiro Y, Kaneko W, Sun YQ, Shibata K, Inokuma K, Zendo T, Sonomoto K (2011) Continuous D-lactic acid production by a novel thermotolerant Lactobacillus delbrueckii subsp lactis QU 41. Appl Microbiol Biot 89(6):1741–1750. doi: 10.1007/s00253-010-3011-7 CrossRefGoogle Scholar
  91. Tejayadi S, Cheryan M (1995) Lactic-acid from cheese whey permeate—productivity and economics of a continuous membrane bioreactor. Appl Microbiol Biot 43(2):242–248CrossRefGoogle Scholar
  92. Tsuge Y, Kawaguchi H, Sasaki K, Tanaka T, Kondo A (2014) Two-step production of D-lactate from mixed sugars by growing and resting cells of metabolically engineered Lactobacillus plantarum. Appl Microbiol Biot 98(11):4911–4918. doi: 10.1007/s00253-014-5594-x CrossRefGoogle Scholar
  93. Tsuge Y, Yamamoto S, Kato N, Suda M, Vertes AA, Yukawa H, Inui M (2015) Overexpression of the phosphofructokinase encoding gene is crucial for achieving high production of D-lactate in Corynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biot 99(11):4679–4689. doi: 10.1007/s00253-015-6546-9 CrossRefGoogle Scholar
  94. Tsuji H (2005) Poly(lactide) stereocomplexes: formation, structure, properties, degradation, and applications. Macromol Biosci 5(7):569–597. doi: 10.1002/mabi.200500062 PubMedCrossRefGoogle Scholar
  95. Vijayakumar J, Aravindan R, Viruthagiri T (2008) Recent trends in the production, purification and application of lactic acid. Chem Biochem Eng Q 22(2):245–264Google Scholar
  96. Wang LM, Zhao B, Li FS, Xu K, Ma CQ, Tao F, Li QG, Xu P (2011a) Highly efficient production of D-lactate by Sporolactobacillus sp. CASD with simultaneous enzymatic hydrolysis of peanut meal. Appl Microbiol Biot 89(4):1009–1017. doi: 10.1007/s00253-010-2904-9 CrossRefGoogle Scholar
  97. Wang QZ, Ingram LO, Shanmugam KT (2011b) Evolution of D-lactate dehydrogenase activity from glycerol dehydrogenase and its utility for D-lactate production from lignocellulose. P Natl Acad Sci USA 108(47):18920–18925. doi: 10.1073/pnas.1111085108 CrossRefGoogle Scholar
  98. Wang YZ, Tian T, Zhao JF, Wang JH, Yan T, Xu LY, Liu Z, Garza E, Iverson A, Manow R, Finan C, Zhou SD (2012) Homofermentative production of D-lactic acid from sucrose by a metabolically engineered Escherichia coli. Biotechnol Lett 34(11):2069–2075. doi: 10.1007/s10529-012-1003-7 PubMedCrossRefGoogle Scholar
  99. Wang Y, Tashiro Y, Sonomoto K (2015a) Fermentative production of lactic acid from renewable materials: recent achievements, prospects, and limits. J Biosci Bioeng 119(1):10–18. doi: 10.1016/j.jbiosc.2014.06.003 PubMedCrossRefGoogle Scholar
  100. Wang ZW, Saini M, Lin LJ, Chiang CJ, Chao YP (2015b) Systematic engineering of Escherichia coli for D-lactate production from crude glycerol. J Agr Food Chem 63(43):9583–9589. doi: 10.1021/acs.jafc.5b04162 CrossRefGoogle Scholar
  101. Wasewar KL (2005) Separation of lactic acid: recent advances. Chem Biochem Eng Q 19(2):159–172Google Scholar
  102. Wee YJ, Kim JN, Ryu HW (2006) Biotechnological production of lactic acid and its recent applications. Food Technol Biotech 44(2):163–172Google Scholar
  103. Wieschalka S, Blombach B, Bott M, Eikmanns BJ (2013) Bio-based production of organic acids with Corynebacterium glutamicum. Microb Biotechnol 6(2):87–102. doi: 10.1111/1751-7915.12013 PubMedCrossRefGoogle Scholar
  104. Xu TT, Bai ZZ, Wang LJ, He BF (2010) Breeding of d(−)-lactic acid high producing strain by low-energy ion implantation and preliminary analysis of related metabolism. Appl Biochem Biotech 160(2):314–321. doi: 10.1007/s12010-008-8274-4 CrossRefGoogle Scholar
  105. Yanez R, Moldes AB, Alonso JL, Parajo JC (2003) Production of D(−)-lactic acid from cellulose by simultaneous saccharification and fermentation using Lactobacillus coryniformis subsp torquens. Biotechnol Lett 25(14):1161–1164PubMedCrossRefGoogle Scholar
  106. Yanez R, Alonso JL, Parajo JC (2005) D-lactic acid production from waste cardboard. J Chem Technol Biot 80(1):76–84. doi: 10.1002/jctb.1160 CrossRefGoogle Scholar
  107. Yi X, Zhang P, Sun JE, Tu Y, Gao QQ, Zhang J, Bao J (2016) Engineering wild-type robust Pediococcus acidilactici strain for high titer L- and D-lactic acid production from corn Stover feedstock. J Biotechnol 217:112–121. doi: 10.1016/j.jbiotec.2015.11.014 PubMedCrossRefGoogle Scholar
  108. Yoo I-K, Chang H-N, Lee E-G, Chang Y-K, Moon S-H (1996) Effect of pH on the production of lactic acid and secondary products in batch cultures of Lactobacillus casei. J Microbiol Biotechnol 6(6):482–486Google Scholar
  109. Yu B, Su F, Wang LM, Xu K, Zhao B, Xu P (2011) Draft genome sequence of Sporolactobacillus inulinus strain CASD, an efficient D-lactic acid-producing bacterium with high-concentration lactate tolerance capability. J Bacteriol 193(20):5864–5865. doi: 10.1128/Jb.05934-11 PubMedPubMedCentralCrossRefGoogle Scholar
  110. Zaunmuller T, Eichert M, Richter H, Unden G (2006) Variations in the energy metabolism of biotechnologically relevant heterofermentative lactic acid bacteria during growth on sugars and organic acids. Appl Microbiol Biot 72(3):421–429. doi: 10.1007/s00253-006-0514-3 CrossRefGoogle Scholar
  111. Zhang YX, Vadlani PV (2013) D-lactic acid biosynthesis from biomass-derived sugars via Lactobacillus delbrueckii fermentation. Bioproc Biosyst Eng 36(12):1897–1904. doi: 10.1007/s00449-013-0965-8 CrossRefGoogle Scholar
  112. Zhang JM, Sato H, Tsuji H, Noda I, Ozaki Y (2005) Infrared spectroscopic study of CH3 center dot center dot center dot O = C interaction during poly(L-lactide)/poly(D-lactide) stereocomplex formation. Macromolecules 38(5):1822–1828. doi: 10.1021/ma047872w CrossRefGoogle Scholar
  113. Zhang Y, Cong W, Shi SY (2011) Repeated fed-batch lactic acid production in a packed bed-stirred fermentor system using a pH feedback feeding method. Bioproc Biosyst Eng 34(1):67–73. doi: 10.1007/s00449-010-0447-1 CrossRefGoogle Scholar
  114. Zhang YX, Kumar A, Hardwidge PR, Tanaka T, Kondo A, Vadlani PV (2016a) D-lactic acid production from renewable lignocellulosic biomass via genetically modified Lactobacillus plantarum. Biotechnol Prog 32(2):271–278. doi: 10.1002/btpr.2212 PubMedCrossRefGoogle Scholar
  115. Zhang YX, Vadlani PV, Kumar A, Hardwidge PR, Govind R, Tanaka T, Kondo A (2016b) Enhanced D-lactic acid production from renewable resources using engineered Lactobacillus plantarum. Appl Microbiol Biot 100(1):279–288. doi: 10.1007/s00253-015-7016-0 CrossRefGoogle Scholar
  116. Zhao T, Liu D, Ren HF, Shi XC, Zhao N, Chen Y, Ying HJ (2014) D-lactic acid production by Sporolactobacillus inulinus Y2-8 immobilized in fibrous bed bioreactor using corn flour hydrolyzate. J Microbiol Biotechn 24(12):1664–1672. doi: 10.4014/jmb.1406.06043 CrossRefGoogle Scholar
  117. Zhou L, Niu DD, Tian KM, Chen XZ, Prior BA, Shen W, Shi GY, Singh S, Wang ZX (2012) Genetically switched D-lactate production in Escherichia coli. Metab Eng 14(5):560–568. doi: 10.1016/j.ymben.2012.05.004 PubMedCrossRefGoogle Scholar
  118. Zhou L, Cui WJ, Liu ZM, Zhou ZM (2016) Metabolic engineering strategies for D-lactate over production in Escherichia coli. J Chem Technol Biot 91(3):576–584. doi: 10.1002/jctb.4856 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Silvia Klotz
    • 1
  • Norman Kaufmann
    • 1
  • Anja Kuenz
    • 1
    Email author
  • Ulf Prüße
    • 1
  1. 1.Thünen - Institute of Agricultural TechnologyBraunschweigGermany

Personalised recommendations