Advertisement

Applied Microbiology and Biotechnology

, Volume 100, Issue 21, pp 9321–9329 | Cite as

Evaluation of immunity to varicella zoster virus with a novel double antigen sandwich enzyme-linked immunosorbent assay

  • Jian Liu
  • Chunye Chen
  • Rui Zhu
  • Xiangzhong Ye
  • Jizong Jia
  • Lianwei Yang
  • Yongmei Wang
  • Wei Wang
  • Jianghui Ye
  • Yimin Li
  • Hua Zhu
  • Qinjian Zhao
  • Jun Zhang
  • Tong ChengEmail author
  • Ningshao Xia
Methods and protocols
  • 506 Downloads

Abstract

Varicella is a highly contagious disease caused by primary infection of Varicella zoster virus (VZV). Varicella can be severe or even lethal in susceptible adults, immunocompromised patients and neonates. Determination of the status of immunity to VZV is recommended for these high-risk populations. Furthermore, measurement of population immunity to VZV can help in developing proper varicella vaccination programmes. VZV glycoprotein E (gE) is an antigen that has been demonstrated to be a highly accurate indicator of VZV-specific immunity. In this study, recombinant gE (rgE) was used to establish a double antigen sandwich enzyme-linked immunosorbent assay (ELISA). The established sandwich ELISA showed high specificity and sensitivity in the detection of human sera, and it could detect VZV-specific antibodies at a concentration of 11.25 m IU/mL with a detection linearity interval of 11.25 to 360 m IU/mL (R 2 = 0.9985). The double gE antigen sandwich ELISA showed a sensitivity of 95.08 % and specificity of 100 % compared to the fluorescent-antibody-to-membrane-antigen (FAMA) test, and it showed a sensitivity of 100 % and a specificity of 94.74 % compared to a commercial neutralizing antibody detection kit. Thus, the established double antigen sandwich ELISA can be used as a sensitive and specific quantitative method to evaluate immunity to VZV.

Keywords

Double antigen sandwich ELISA Glycoprotein E Varicella zoster virus Serological evaluation 

Notes

Acknowledgments

We thank members of the Analysis and Testing Centre (School of Life Sciences, Xiamen University) for their mass spectrometry work. Editors at NPG Language Editing provided editing assistance to the authors during the preparation of this manuscript.

Compliance with ethical standards

Funding

This work was supported by a grant from the National High Technology Research and Development Programme of China (No. 2012AA02A408) and the National Science and Technology Major Project of Infectious Diseases (No. 2012ZX10004503-005). The funding sources had no involvement in study design, data collection and decision for publication.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the Independent Ethics Committee approval obtained from the Ethics Committee of the National Institute of Diagnostics and Vaccine Development in Infectious Diseases.

This article does not contain any studies with animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. Baba K, Yoshida M, Tawa A, Yabuuchi H, Maeda K, Takahashi M (1984) A simplified immunofluorescence technique for antibody to varicella-zoster membrane antigen (FAMA. Biken J 27(1):23–29. doi: 10.1016/0167-7012(95)00066-6 PubMedGoogle Scholar
  2. Baiker A, Haase R, Eberle J, Vizoso Pinto MG, Pfrepper KI, Petrich A, Deml L, Campe H, Nitschko H, Jaeger G (2010) Early detection of varicella-zoster virus (VZV)-specific T-cells before seroconversion in primary varicella infection: case report. Virol J 7:54. doi: 10.1186/1743-422X-7-54
  3. Bourre B, Lefaucheur R, Ahtoy P, Travers F, Fetter D (2013) Varicella-zoster virus acute myelitis in a patient with MS treated with natalizumab. Neurology 81(22):1966–1967. doi: 10.1212/01.wnl.0000439052.05262.1d
  4. Caunt AE, Shaw DG (1969) Neutralization tests with varicella-zoster virus. J Hyg (Lond) 67(2):343–352Google Scholar
  5. Choo PW, Donahue JG, Manson JE, Platt R (1995) The epidemiology of varicella and its complications. J Infect Dis 172(3):706–712. doi: 10.1093/infdis/172.3.706 CrossRefPubMedGoogle Scholar
  6. Davison AJ, Edson CM, Ellis RW, Forghani B, Gilden D, Grose C, Keller PM, Vafai A, Wroblewska Z, Yamanishi K (1986) New common nomenclature for glycoprotein genes of varicella-zoster virus and their glycosylated products. J Virol 57(3):1195–1197Google Scholar
  7. Drolet M, Brisson M, Schmader KE, Levin MJ, Johnson R, Oxman MN, Patrick D, Blanchette C, Mansi JA (2010) The impact of herpes zoster and postherpetic neuralgia on health-related quality of life: a prospective study. Can Med Assoc J 182(16):1731–1736. doi: 10.1503/cmaj.091711 CrossRefGoogle Scholar
  8. Gershon AA, Gershon MD (2010) Perspectives on vaccines against varicella-zoster virus infections. Curr Top Microbiol Immunol 342:359–372. doi: 10.1007/82_2010_12 PubMedGoogle Scholar
  9. Gershon AA, Larussa P, Steinberg S (1994) Detection of antibodies to varicella-zoster virus using a latex agglutination assay. Clin Diagn Virol 2(4–5):271–277. doi: 10.1016/0928-0197(94)90051-5 CrossRefPubMedGoogle Scholar
  10. Grose C, Edmond BJ, Brunell PA (1979) Complement-enhanced neutralizing antibody response to varicella-zoster virus. J Infect Dis 139(4):432–437. doi: 10.1093/infdis/139.4.432 CrossRefPubMedGoogle Scholar
  11. Guris D, Jumaan AO, Mascola L, Watson BM, Zhang JX, Chaves SS, Gargiullo P, Perella D, Civen R, Seward JF (2008) Changing varicella epidemiology in active surveillance sites—United States, 1995-2005. J Infect Dis 197(Suppl 2):S71–S75. doi: 10.1086/522156 CrossRefPubMedGoogle Scholar
  12. Hammond O, Wang Y, Green T, Antonello J, Kuhn R, Motley C, Stump P, Rich B, Chirmule N, Marchese RD (2006) The optimization and validation of the glycoprotein ELISA assay for quantitative varicella-zoster virus (VZV) antibody detection. J Med Virol 78(12):1679–1687. doi: 10.1002/jmv.20754 CrossRefPubMedGoogle Scholar
  13. Han SB, Kang KR, Huh DH, Lee HC, Kim JH, Kang JH, Ma SH (2014) Seroepidemiology of varicella-zoster virus in Korean adolescents and adults using fluorescent antibody to membrane antigen test. Epidemiol Infect 143:1643–1650. doi: 10.1017/S0950268814002441 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Han X, Ping B, Morita M, Ebi R, Inoue J, Tanaka Y, Chen Y, Wan X, Yang W, Chang B, Wu X (2015) A novel highly sensitive and specific flow cytometry system for cervical cancer screening. Gynecol Oncol 139(1):52–58. doi: 10.1016/j.ygyno.2015.07.102 CrossRefPubMedGoogle Scholar
  15. Keller PM, Lonergan K, Neff BJ, Morton DA, Ellis RW (1986) Purification of individual varicella-zoster virus (VZV) glycoproteins gpI, gpII, and gpIII and their use in ELISA for detection of VZV glycoprotein-specific antibodies. J Virol Methods 14(2):177–188. doi: 10.1016/0166-0934(86)90048-0 CrossRefPubMedGoogle Scholar
  16. Kimura H, Straus SE, Williams RK (1997) Varicella-zoster virus glycoproteins E and I expressed in insect cells form a heterodimer that requires the N-terminal domain of glycoprotein I. Virology 233(2):382–391. doi: 10.1006/viro.1997.8625 CrossRefPubMedGoogle Scholar
  17. Krah DL, Cho I, Schofield T, Ellis RW (1997) Comparison of gpELISA and neutralizing antibody responses to Oka/Merck live varicella vaccine (Varivax) in children and adults. Vaccine 15(1):61–64CrossRefPubMedGoogle Scholar
  18. Larussa P, Steinberg S, Waithe E, Hanna B, Holzman R (1987) Comparison of five assays for antibody to varicella-zoster virus and the fluorescent-antibody-to-membrane-antigen test. J Clin Microbiol 25(11):2059–2062PubMedPubMedCentralGoogle Scholar
  19. Liu J, Zhu R, Ye X, Yang L, Wang Y, Huang Y, Wu J, Wang W, Ye J, Li Y, Zhao Q, Zhu H, Cheng T, Xia N (2015) A monoclonal antibody-based VZV glycoprotein E quantitative assay and its application on antigen quantitation in VZV vaccine. Appl Microbiol Biot 99(11):4545–4553. doi: 10.1007/s00253-015-6602-5 CrossRefGoogle Scholar
  20. Maple PA, Gray J, Breuer J, Kafatos G, Parker S, Brown D (2006) Performance of a time-resolved fluorescence immunoassay for measuring varicella-zoster virus immunoglobulin G levels in adults and comparison with commercial enzyme immunoassays and Merck glycoprotein enzyme immunoassay. Clin Vaccine Immunol 13(2):214–218. doi: 10.1128/CVI.13.2.214-218.2006 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Marin M, Meissner HC, Seward JF (2008) Varicella prevention in the United States: a review of successes and challenges. Pediatrics 122(3):e744–e751. doi: 10.1542/peds.2008-0567 CrossRefPubMedGoogle Scholar
  22. Michalik DE, Steinberg SP, Larussa PS, Edwards KM, Wright PF, Arvin AM, Gans HA, Gershon AA (2008) Primary vaccine failure after 1 dose of varicella vaccine in healthy children. J Infect Dis 197(7):944–949. doi: 10.1086/529043 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Park R, Hwang JY, Lee KI, Namkoong S, Choi SK, Park S, Park H, Park J (2015) Measurement of antibodies to varicella-zoster virus using a virus-free fluorescent-antibody-to-membrane antigen (FAMA) test. J Microbiol Biotech 25:268–273. doi: 10.4014/jmb.1408.08048 CrossRefGoogle Scholar
  24. Provost PJ, Krah DL, Kuter BJ, Morton DH, Schofield TL, Wasmuth EH, White CJ, Miller WJ, Ellis RW (1991) Antibody assays suitable for assessing immune responses to live varicella vaccine. Vaccine 9(2):111–116CrossRefPubMedGoogle Scholar
  25. Sauerbrei A, Wutzler P (2006) Serological detection of varicella-zoster virus-specific immunoglobulin G by an enzyme-linked immunosorbent assay using glycoprotein antigen. J Clin Microbiol 44(9):3094–3097. doi: 10.1128/JCM.00719-06 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Sauerbrei A, Farber I, Brandstadt A, Schacke M, Wutzler P (2004) Immunofluorescence test for sensitive detection of varicella-zoster virus-specific IgG: an alternative to fluorescent antibody to membrane antigen test. J Virol Methods 119(1):25–30. doi: 10.1016/j.jviromet.2004.02.012 CrossRefPubMedGoogle Scholar
  27. Sauerbrei A, Schafler A, Hofmann J, Schacke M, Gruhn B, Wutzler P (2012) Evaluation of three commercial varicella-zoster virus IgG enzyme-linked immunosorbent assays in comparison to the fluorescent-antibody-to-membrane-antigen test. Clin Vaccine Immunol 19(8):1261–1268. doi: 10.1128/CVI.00183-12 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Sawanyawisuth K, Phuttharak W, Tiamkao S, Boonpila A (2007) MRI findings in acute disseminated encephalomyelitis following varicella infection in an adult. J Clin Neurosci 14(12):1230–1233. doi: 10.1016/j.jocn.2006.09.001 CrossRefPubMedGoogle Scholar
  29. Shehab Z, Brunell PA (1983) Enzyme-linked immunosorbent assay for susceptibility to varicella. J Infect Dis 148(3):472–476. doi: 10.1093/infdis/148.3.472 CrossRefPubMedGoogle Scholar
  30. Takahashi M, Okuno Y, Otsuka T, Osame J, Takamizawa A (1975) Development of a live attenuated varicella vaccine. Biken J 18(1):25–33PubMedGoogle Scholar
  31. Vazquez M, LaRussa PS, Gershon AA, Steinberg SP, Freudigman K, Shapiro ED (2001) The effectiveness of the varicella vaccine in clinical practice. N Engl J Med 344(13):955–960. doi: 10.1056/NEJM200103293441302 CrossRefPubMedGoogle Scholar
  32. Wasmuth EH, Miller WJ (1990) Sensitive enzyme-linked immunosorbent assay for antibody to varicella-zoster virus using purified VZV glycoprotein antigen. J Med Virol 32(3):189–193. doi: 10.1002/jmv.1890320310 CrossRefPubMedGoogle Scholar
  33. Williams V, Gershon A, Brunell PA (1974) Serologic response to varicella-zoster membrane antigens measured by direct immunofluorescence. J Infect Dis 130(6):669–672. doi: 10.1093/infdis/130.6.669 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Jian Liu
    • 1
    • 3
  • Chunye Chen
    • 1
  • Rui Zhu
    • 1
  • Xiangzhong Ye
    • 2
  • Jizong Jia
    • 2
  • Lianwei Yang
    • 1
  • Yongmei Wang
    • 1
  • Wei Wang
    • 1
  • Jianghui Ye
    • 1
  • Yimin Li
    • 2
  • Hua Zhu
    • 3
  • Qinjian Zhao
    • 1
  • Jun Zhang
    • 1
  • Tong Cheng
    • 1
    Email author
  • Ningshao Xia
    • 1
  1. 1.State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life SciencesXiamen UniversityXiamenChina
  2. 2.Beijing Wantai Biological Pharmacy EnterpriseBeijingChina
  3. 3.Department of Microbiology and Molecular Genetics, New Jersey Medical SchoolRutgers UniversityNewarkUSA

Personalised recommendations