Advertisement

Applied Microbiology and Biotechnology

, Volume 100, Issue 23, pp 10019–10029 | Cite as

Conversion of nornicotine to 6-hydroxy-nornicotine and 6-hydroxy-myosmine by Shinella sp. strain HZN7

  • Jiguo Qiu
  • Na Li
  • Zhenmei Lu
  • Youjian Yang
  • Yun Ma
  • Lili Niu
  • Jian HeEmail author
  • Weiping Liu
Applied genetics and molecular biotechnology

Abstract

Nornicotine is a natural alkaloid produced by plants in the genus Nicotiana and is structurally related to nicotine. Importantly, nornicotine is the direct precursor of tobacco-specific nitrosamine N′-nitrosonornicotine, which is a highly potent human carcinogen. Microbial detoxification and degradation of nicotine have been well characterized; however, until now, there has been no information on the molecular mechanism of nornicotine degradation. In this study, we demonstrate the transformation of nornicotine by the nicotine-degrading strain Shinella sp. HZN7. Three transformation products were identified as 6-hydroxy-nornicotine, 6-hydroxy-myosmine, and 6-hydroxy-pseudooxy-nornicotine by UV spectroscopy, high-resolution mass spectrometry, nuclear magnetic resonance, and Fourier transform-infrared spectroscopy analyses. The two-component nicotine dehydrogenase genes nctA1 and nctA2 were cloned, and their product, NctA, was confirmed to be responsible for the conversion of nornicotine into 6-hydroxy-nornicotine as well as nicotine into 6-hydroxy-nicotine. The 6-hydroxy-nicotine oxidase, NctB, catalyzed the oxidation of 6-hydroxy-nornicotine to 6-hydroxy-myosmine, and it spontaneously hydrolyzed into 6-hydroxy-pseudooxy-nornicotine. However, 6-hydroxy-pseudooxy-nornicotine could not be further degraded by strain HZN7. This study demonstrated that nornicotine is partially transformed by strain HZN7 via nicotine degradation pathway.

Keywords

Nornicotine 6-Hydroxy-nornicotine 6-Hydroxy-myosmine 6-Hydroxy-pseudooxy-nornicotine Nicotine dehydrogenase 6-Hydroxy-nicotine oxidase Shinella sp. HZN7 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 31500082 and 31422003), China Postdoctoral Science Foundation (No. 2014 M560495), and the Program for New Century Excellent Talents in University (NCET-13-0861).

Compliance with ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

253_2016_7805_MOESM1_ESM.pdf (692 kb)
ESM 1 (PDF 692 kb)

References

  1. Balbo S, James-Yi S, Johnson CS, O’Sullivan MG, Stepanov I, Wang M, Bandyopadhyay D, Kassie F, Carmella S, Upadhyaya P (2013) (S)-N′-nitrosonornicotine, a constituent of smokeless tobacco, is a powerful oral cavity carcinogen in rats. Carcinogenesis 34(9):2178–2183CrossRefPubMedPubMedCentralGoogle Scholar
  2. Benowitz NL (2010) Nicotine addiction. N Engl J Med 362(24):2295–2303CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Ana Biochem 72(1):248–254CrossRefGoogle Scholar
  4. Brandsch R (2006) Microbiology and biochemistry of nicotine degradation. Appl Microbiol Biotechnol 69(5):493–498. doi: 10.1007/s00253-005-0226-0 CrossRefPubMedGoogle Scholar
  5. Burns D, Dybing E, Gray N, Hecht S, Anderson C, Sanner T, O’Connor R, Djordjevic M, Dresler C, Hainaut P (2008) Mandated lowering of toxicants in cigarette smoke: a description of the World Health Organization TobReg proposal. Tob Control 17(2):132–141CrossRefPubMedPubMedCentralGoogle Scholar
  6. Cai B, Bush LP (2012) Variable nornicotine enantiomeric composition caused by nicotine demethylase CYP82E4 in tobacco leaf. J Agric Food Chem 60(46):11586–11591CrossRefPubMedGoogle Scholar
  7. Food U, Administration D (2011) Harmful and potentially harmful constituents in tobacco products and tobacco smoke; request for comments. Fed Regist 76:50226–50230Google Scholar
  8. Gagat M, Grzanka D, Izdebska M, Maczynska E, Grzanka A (2013) Nornicotine impairs endothelial cell-cell adherens junction complexes in EA. hy926 cell line via structural reorganization of F-actin. Folia Histochem Cytobiol 51(3):179–192CrossRefPubMedGoogle Scholar
  9. Gavilano LB, Coleman NP, Bowen SW, Siminszky B (2007) Functional analysis of nicotine demethylase genes reveals insights into the evolution of modern tobacco. J Biol Chem 282(1):249–256CrossRefPubMedGoogle Scholar
  10. Gurusamy R, Natarajan S (2013) Current status on biochemistry and molecular biology of microbial degradation of nicotine. The Sci World J 2013:1–15CrossRefGoogle Scholar
  11. Hajek P, Etter JF, Benowitz N, Eissenberg T, McRobbie H (2014) Electronic cigarettes: review of use, content, safety, effects on smokers and potential for harm and benefit. Addiction 109(11):1801–1810CrossRefPubMedPubMedCentralGoogle Scholar
  12. Harris AC, Tally L, Muelken P, Banal A, Schmidt CE, Cao Q, LeSage MG (2015) Effects of nicotine and minor tobacco alkaloids on intracranial-self-stimulation in rats. Drug Alcohol Depend 153:330–334CrossRefPubMedPubMedCentralGoogle Scholar
  13. Hecht SS (2003) Tobacco carcinogens, their biomarkers and tobacco-induced cancer. Nat Rev Cancer 3(10):733–744CrossRefPubMedGoogle Scholar
  14. Humans IWGotEoCRt, Cancer IAfRo (2007) Smokeless tobacco and some tobacco-specific N-nitrosamines, IARC Monograph on the Evaluation of Carcinogenic Risks to Humans, vol 89. IARC, Lyon, FranceGoogle Scholar
  15. Jasinska AJ, Zorick T, Brody AL, Stein EA (2014) Dual role of nicotine in addiction and cognition: a review of neuroimaging studies in humans. Neuropharmacology 84:111–122CrossRefPubMedGoogle Scholar
  16. Lewis RS, Parker RG, Danehower DA, Andres K, Jack AM, Whitley DS, Bush LP (2012) Impact of alleles at the yellow burley (Yb) loci and nitrogen fertilization rate on nitrogen utilization efficiency and tobacco-specific nitrosamine (TSNA) formation in air-cured tobacco. J Agric Food Chem 60(25):6454–6461CrossRefPubMedGoogle Scholar
  17. Li H, Li X, Duan Y, Zhang K-Q, Yang J (2010) Biotransformation of nicotine by microorganism: the case of Pseudomonas spp. Appl Microbiol Biotechnol 86(1):11–17CrossRefPubMedGoogle Scholar
  18. Liu J, Ma G, Chen T, Hou Y, Yang S, Zhang K-Q, Yang J (2015) Nicotine-degrading microorganisms and their potential applications. Appl Microbiol Biotechnol 99(9):3775–3785CrossRefPubMedGoogle Scholar
  19. Ma Y, Wei Y, Qiu J, Wen R, Hong J, Liu W (2013) Isolation, transposon mutagenesis, and characterization of the novel nicotine-degrading strain Shinella sp. HZN7. Appl Microbiol Biotechnol 98(6):2625–2636. doi: 10.1007/s00253-013-5207-0 CrossRefPubMedGoogle Scholar
  20. Meng XJ, Lu LL, Gu GF, Xiao M (2010) A novel pathway for nicotine degradation by Aspergillus oryzae 112822 isolated from tobacco leaves. Res Microbiol 161(7):626–633CrossRefPubMedGoogle Scholar
  21. Middleton LS, Crooks PA, Wedlund PJ, Cass WA, Dwoskin LP (2007) Nornicotine inhibition of dopamine transporter function in striatum via nicotinic receptor activation. Synapse 61(3):157–165CrossRefPubMedGoogle Scholar
  22. Min J, Zhang J-J, Zhou N-Y (2014) The gene cluster for para-nitrophenol catabolism is responsible for 2-chloro-4-nitrophenol degradation in Burkholderia sp. strain SJ98. Appl Environ Microbiol 80(19):6212–6222CrossRefPubMedPubMedCentralGoogle Scholar
  23. Nelson K, Weinel C, Paulsen I, Dodson R, Hilbert H, Martins dos Santos V, Fouts D, Gill S, Pop M, Holmes M (2002) Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ Microbiol 4(12):799–808CrossRefPubMedGoogle Scholar
  24. Qiu J, Ma Y, Chen L, Wu L, Wen Y, Liu W (2011) A sirA-like gene, sirA2, is essential for 3-succinoyl-pyridine metabolism in the newly isolated nicotine-degrading Pseudomonas sp. HZN6 strain. Appl Microbiol Biotechnol 92(5):1023–1032. doi: 10.1007/s00253-011-3353-9 CrossRefPubMedGoogle Scholar
  25. Qiu J, Ma Y, Wen Y, Chen L, Wu L, Liu W (2012) Functional identification of two novel genes from Pseudomonas sp. strain HZN6 involved in the catabolism of nicotine. Appl Environ Microbiol 78:2154–2160CrossRefPubMedPubMedCentralGoogle Scholar
  26. Qiu J, Ma Y, Zhang J, Wen Y, Liu W (2013) Cloning of a novel nicotine oxidase gene from Pseudomonas sp. strain HZN6 whose product nonenantioselectively degrades nicotine to pseudooxynicotine. Appl Environ Microbiol 79(7):2164–2171CrossRefPubMedGoogle Scholar
  27. Qiu J, Wei Y, Ma Y, Wen R, Wen Y, Liu W (2014) A novel (S)-6-hydroxynicotine oxidase gene from Shinella sp. strain HZN7. Appl Environ Microbiol 80(18):5552–5560CrossRefPubMedPubMedCentralGoogle Scholar
  28. Qiu J, Liu M, Wen R, Zhang D, Hong J (2015) Regulators essential for nicotine degradation in Shinella sp. HZN7. Proc Biochem 50(11):1947–1950CrossRefGoogle Scholar
  29. Ruan A, Min H, Peng X, Huang Z (2005) Isolation and characterization of Pseudomonas sp. strain HF-1, capable of degrading nicotine. Res Microbiol 156(5):700–706CrossRefPubMedGoogle Scholar
  30. Schuller HM (2002) Mechanisms of smoking-related lung and pancreatic adenocarcinoma development. Nat Rev Cancer 2(6):455–463CrossRefPubMedGoogle Scholar
  31. Shi H, Wang R, Bush LP, Zhou J, Yang H, Fannin N, Bai R (2013) Changes in TSNA contents during tobacco storage and the effect of temperature and nitrate level on TSNA formation. J Agric Food Chem 61(47):11588–11594CrossRefPubMedGoogle Scholar
  32. Siminszky B, Gavilano L, Bowen SW, Dewey RE (2005) Conversion of nicotine to nornicotine in Nicotiana tabacum is mediated by CYP82E4, a cytochrome P450 monooxygenase. Proc Nat Acad Sci USA 102(41):14919–14924CrossRefPubMedPubMedCentralGoogle Scholar
  33. Sindelar R, Rosazza J, Barfknecht C (1979) N-demethylation of nicotine and reduction of nicotine-1′-N-oxide by Microsporum gypseum. Appl Environ Microbiol 38(5):836–839PubMedPubMedCentralGoogle Scholar
  34. Sisson VA, Severson R (1990) Alkaloid composition of the Nicotiana species. Contrib Tobacco Res 14(6):327–339Google Scholar
  35. Tang H, Wang L, Wang W, Yu H, Zhang K, Yao Y, Xu P (2013) Systematic unraveling of the unsolved pathway of nicotine degradation in Pseudomonas. PLoS Genet 9(10):e1003923. doi: 10.1371/journal.pgen.1003923 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Wada E (1956) Microblal degradation of nornicotine. Arch Biochem Biophy 64(1):244–246CrossRefGoogle Scholar
  37. Wada E (1957) Microbial degradation of the tobacco alkaloids, and some related compounds. Arch Biochem Biophy 72(1):145–162CrossRefGoogle Scholar
  38. Wei X, Deng X, Cai D, Ji Z, Wang C, Yu J, Li J, Chen S (2014) Decreased tobacco-specific nitrosamines by microbial treatment with Bacillus amyloliquefaciens DA9 during the air-curing process of burley tobacco. J Agric Food Chem 62(52):12701–12706CrossRefPubMedGoogle Scholar
  39. Wu M, Qian Y, Boyd JM, Leavey S, Hrudey SE, Krasner SW, Li X-F (2014) Identification of tobacco-specific nitrosamines as disinfection byproducts in chloraminated water. Environ Sci Technol 48(3):1828–1834CrossRefPubMedGoogle Scholar
  40. Xia B, Feng M, Xu G, Xu J, Li S, Chen X, Ding L, Zhou Y (2014) Investigation of the chemical compositions in tobacco of different origins and maturities at harvest by GC–MS and HPLC–PDA-QTOF-MS. J Agric Food Chem 62(22):4979–4987CrossRefPubMedGoogle Scholar
  41. Yu H, Tang H, Li Y, Xu P (2015) Molybdenum-containing nicotine hydroxylase genes in a nicotine degradation pathway that is a variant of the pyridine and pyrrolidine pathways. Appl Environ Microbiol 81(24):8330–8338CrossRefPubMedPubMedCentralGoogle Scholar
  42. Zwickenpflug W, Meger M, Richter E (1998) Occurrence of the tobacco alkaloid myosmine in nuts and nut products of Arachus hypogaea and Corylus avellana. J Agric Food Chem 46(7):2703–2706CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Jiguo Qiu
    • 1
  • Na Li
    • 1
  • Zhenmei Lu
    • 2
  • Youjian Yang
    • 1
  • Yun Ma
    • 3
  • Lili Niu
    • 4
  • Jian He
    • 1
    Email author
  • Weiping Liu
    • 4
  1. 1.Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life SciencesNanjing Agricultural UniversityNanjingChina
  2. 2.College of Life SciencesZhejiang UniversityHangzhouChina
  3. 3.College of EnvironmentZhejiang University of TechnologyHangzhouChina
  4. 4.College of Environmental and Resource SciencesZhejiang UniversityHangzhouChina

Personalised recommendations