Applied Microbiology and Biotechnology

, Volume 100, Issue 19, pp 8303–8313 | Cite as

Biosynthetic gene clusters for relevant secondary metabolites produced by Penicillium roqueforti in blue cheeses

  • Carlos García-Estrada
  • Juan-Francisco Martín


Ripening of blue-veined cheeses, such as the French Bleu and Roquefort, the Italian Gorgonzola, the English Stilton, the Danish Danablu or the Spanish Cabrales, Picón Bejes-Tresviso, and Valdeón, requires the growth and enzymatic activity of the mold Penicillium roqueforti, which is responsible for the characteristic texture, blue-green spots, and aroma of these types of cheeses. This filamentous fungus is able to synthesize different secondary metabolites, including andrastins, mycophenolic acid, and several mycotoxins, such as roquefortines C and D, PR-toxin and eremofortins, isofumigaclavines A and B, and festuclavine. This review provides a detailed description of the main secondary metabolites produced by P. roqueforti in blue cheese, giving a special emphasis to roquefortine, PR-toxin and mycophenolic acid, and their biosynthetic gene clusters and pathways. The knowledge of these clusters and secondary metabolism pathways, together with the ability of P. roqueforti to produce beneficial secondary metabolites, is of interest for commercial purposes.


Roquefortine PR-toxin Mycophenolic acid Penicillium roqueforti Blue cheese 



Part of the information included in this article has been obtained directly from results published by our group in different research works, which have been supported by a project of the European Union (Sixth Frame Programme: Eurofungbase LSSG-CT-2005-018964). We especially thank K. Kosalková and P. Liras for valuable scientific discussions.

Compliance with ethical standards

This article does not contain any studies with human participants or animals, performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Ali H, Ries MI, Nijland JG, Lankhorst PP, Hankemeier T, Bovenberg RA, Vreeken RJ, Driessen AJ (2013) A branched biosynthetic pathway is involved in production of roquefortine and related compounds in Penicillium chrysogenum. PLoS One 8:e65328CrossRefPubMedPubMedCentralGoogle Scholar
  2. Anderson HA, Bracewell JM, Fraser AR, Jones D, Robertson GW, Russell JD (1988) 5-Hydroxymaltol and mycophenolic acid, secondary metabolites from Penicillium echinulatum. Trans Br Mycol Soc 91:649–651CrossRefGoogle Scholar
  3. Aninat C, Hayashi Y, André F, Delaforge M (2001) Molecular requirements for inhibition of cytochrome p450 activities by roquefortine. Chem Res Toxicol 14:1259–1265CrossRefPubMedGoogle Scholar
  4. Arnold DL, Scott PM, McGuire PF, Hawig J, Nera EA (1987) Acute toxicity studies on roquefortine and PR toxin, metabolites of Penicillium roqueforti in the mouse. Food Cosmet Toxicol 16:369–371CrossRefGoogle Scholar
  5. Arnoux B, Pascard C, Moreau S (1977) Eremofortin D, a valencane-class sesquiterpene. Acta Cryst 33:2930–2932CrossRefGoogle Scholar
  6. Barrow KD, Colley PW, Tribe DE (1979) Biosynthesis of the neurotoxin alkaloid roquefortine. J Chem Soc Chem Commun 1979:225–226CrossRefGoogle Scholar
  7. Bentley R (2000) Mycophenolic acid: a one hundred year odyssey from antibiotic to immunosuppressant. Chem Rev 100:3801–3826CrossRefPubMedGoogle Scholar
  8. Boysen M, Skouboe P, Frisvad JC, Rossen L (1996) Reclassification of the Penicillium roqueforti group into three species on the basis of molecular genetic and biochemical profiles. Microbiology 142:541–549CrossRefPubMedGoogle Scholar
  9. Bräse S, Encinas A, Keck J, Nising CF (2009) Chemistry and biology of mycotoxins and related fungal metabolites. Chem Rev 109:3903–3990CrossRefPubMedGoogle Scholar
  10. Cakmakci S, Gurses M, Hayaloglu AA, Cetin B, Sekerci P, Dagdemir E (2015) Mycotoxin production capability of Penicillium roqueforti in strains isolated from mould-ripened traditional Turkish civil cheese. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 32:245–249CrossRefPubMedGoogle Scholar
  11. Chalmers AA, de Jesus AE, Gorst-Allman CP, Steyn PS (1981) Biosynthesis of PR toxin by Penicillium roqueforti. J Chem Soc Perkinn 1:2899–2903CrossRefGoogle Scholar
  12. Chang L, Tsai W (1998) Isolation, purification, and characterization of the PR oxidase from Penicillium roqueforti. Appl Environ Microbiol 64:5012–5015PubMedPubMedCentralGoogle Scholar
  13. Chang S, Lu K, Yeh S (1993) Secondary metabolites resulting from degradation of PR-toxin by Penicillium roqueforti. Appl Environ Microbiol 59:981–986PubMedPubMedCentralGoogle Scholar
  14. Chang SC, Yeh SF, Li SY, Lei WY, Chen MY (1996) A novel secondary metabolite relative to the degradation of PR toxin by Penicillium roqueforti. Curr Microbiol 32:141–146CrossRefPubMedGoogle Scholar
  15. Chang SC, Lei WY, Tsai YC, Wei YH (1998) Isolation, purification, and characterization of the PR oxidase from Penicillium roqueforti. Appl Environ Microbiol 64:5012–5015PubMedPubMedCentralGoogle Scholar
  16. Chang SC, Ho CP, Cheng MK (2004a) Isolation, purification, and characterization of the PR-amide synthetase from Penicillium roqueforti. Fung Sci 19:117–123Google Scholar
  17. Chang SC, Cheng MK, Wei YH (2004b) Production of PR-imine, PR-acid, and PR-amide relative to the metabolism of PR toxin by Penicillium roqueforti. Fung Sci 19:39–46Google Scholar
  18. Chen FC, Chen CF, Wei RD (1982) Acute toxicity of PR toxin, a mycotoxin from Penicillium roqueforti. Toxicon 20:433–441CrossRefPubMedGoogle Scholar
  19. Cole RJ, Dorner JW, Cox RH, Raymond LW (1983) Two classes of alkaloid mycotoxins produced by Penicillium crustosum Thom isolated from contaminated beer. J Agric Food Chem 31:655–657CrossRefPubMedGoogle Scholar
  20. Dai MC, Tabacchi R, Saturnin C (1993) Nitrogen-containing aromatic compound from the culture medium of Penicillium chrysogenum THOM. Chimia 47:226–229Google Scholar
  21. Deetae P, Bonnarme P, Spinnler HE, Helinck S (2007) Production of volatile aroma compounds by bacterial strains isolated from different surface-ripened French cheeses. Appl Microbiol Biotechnol 76:1161–1171CrossRefPubMedGoogle Scholar
  22. Del-Cid A, Gil-Durán C, Vaca I, Rojas-Aedo JF, García-Rico RO, Levicán G, Chávez R (2016) Identification and functional analysis of the mycophenolic acid gene cluster of Penicillium roqueforti. PLoS One 11:e0147047CrossRefPubMedPubMedCentralGoogle Scholar
  23. Driehuis F (2013) Silage and the safety and quality of dairy foods: a review. Agric Food Sci 22:16–34Google Scholar
  24. Engel G, Teuber M (1978) Simple aid for the identification of Penicillium roqueforti Thom: growth in acetic acid. Eur J Appl Microbiol Biotechnol 6:107–111CrossRefGoogle Scholar
  25. Engel G, Teuber M (1983) Differentiation of Penicillium roqueforti strains by thin-layer chromatography of metabolites. Milchwissenschaft 38:513–516Google Scholar
  26. Engel G, von Milczewski KE, Prokopek D, Teuber M (1982) Strain-specific synthesis of mycophenolic acid by Penicillium roqueforti in blue-veined cheese. Appl Environ Microbiol 43:1034–1040PubMedPubMedCentralGoogle Scholar
  27. Eugui EM, Almquist SJ, Muller CD, Allison AC (1991) Lymphocyte-selective cytostatic and immunosuppressive effects of mycophenolic acid in vitro: role of deoxyguanosine nucleotide depletion. Scand J Immunol 33:161–173CrossRefPubMedGoogle Scholar
  28. Fernández-Bodega MA, Mauriz E, Gómez A, Martín JF (2009) Proteolytic activity, mycotoxins and andrastin A in Penicillium roqueforti strains isolated from Cabrales, Valdeón and Bejes-Tresviso local varieties of blue-veined cheeses. Int J Food Microbiol 136:18–25CrossRefPubMedGoogle Scholar
  29. Filtenborg O, Frisvad JC, Thrane U (1996) Moulds in food spoilage. Int J Food Microbiol 33:85–102CrossRefPubMedGoogle Scholar
  30. Finoli C, Vecchio A, Galli A, Dragoni I (2001) Roquefortine C occurrence in blue cheese. J Food Prot 64:246–251PubMedGoogle Scholar
  31. Florey HW, Jennings MA (1946) Mycophenolic acid; an antibiotic from Penicillium brevicompactum Dlerckx. Lancet 1:46–49CrossRefPubMedGoogle Scholar
  32. Fontaine K, Passerò E, Vallone L, Hymery N, Coton M, Jany JL, Mounier J, Coton E (2015) Occurrence of roquefortine C, mycophenolic acid and aflatoxin M1 mycotoxins in blue-veined cheeses. Food Control 47:634–640CrossRefGoogle Scholar
  33. Frisvad JC, Filtenborg O (1989) Terverticillate penicillia: chemotaxonomy and mycotoxin production. Mycologia 81:837–861CrossRefGoogle Scholar
  34. Frisvad JC, Smedsgaard J, Larsen TO, Samson RA, Robert A (2004) Mycotoxins, drugs and other extrolites produced by species in Penicillium subgenus Penicillium. Stud Mycol 49:201–241Google Scholar
  35. García-Estrada C, Ullán RV, Albillos SM, Fernández-Bodega MA, Durek P, von Döhren H, Martín JF (2011) A single cluster of coregulated genes encodes the biosynthesis of the mycotoxins roquefortine C and meleagrin in Penicillium chrysogenum. Chem Biol 18:1499–1512CrossRefPubMedGoogle Scholar
  36. Gorst-Allman CP, Steyn PS, Vleggaar R (1982) The biosynthesis of roquefortine. An investigation of acetate and mevalonate incorporation using high field n.m.r. spectroscopy. J Chem Soc Chem Commun 1982:652–653CrossRefGoogle Scholar
  37. Häggblom P (1990) Isolation of roquefortine C from feed grain. Appl Environ Microbiol 56:2924–2926PubMedPubMedCentralGoogle Scholar
  38. Hansen BG, Genee HJ, Kaas CS, Nielsen JB, Mortensen UH, Frisvad JC, Patil KR (2011) A new class of IMP dehydrogenases with a role in self-resistance in mycophenolic acid producing fungi. BMC Microbiol 11:202CrossRefPubMedPubMedCentralGoogle Scholar
  39. Hansen BG, Mnich E, Nielsen KF, Nielsen JB, Nielsen MT, Mortensen UH, Larsen TO, Patil KR (2012) Involvement of a natural fusion of a cytochrome P450 and a hydrolase in mycophenolic acid biosynthesis. Appl Environ Microbiol 78:4908–4913CrossRefPubMedPubMedCentralGoogle Scholar
  40. Hidalgo PI, Ullán RV, Albillos SM, Montero O, Fernández-Bodega MÁ, García-Estrada C, Fernández-Aguado M, Martín JF (2014) Molecular characterization of the PR-toxin gene cluster in Penicillium roqueforti and Penicillium chrysogenum: cross talk of secondary metabolite pathways. Fungal Genet Biol 62:11–24CrossRefPubMedGoogle Scholar
  41. Hohn TM, Plattner RD (1989) Purification and characterization of the sesquiterpene cyclase aristolochene synthase from Penicillium roqueforti. Arch Biochem Biophys 272:137–143CrossRefPubMedGoogle Scholar
  42. Houbraken J, Samson RA (2011) Phylogeny of Penicillium and the segregation of Trichocomaceae into three families. Stud Mycol 70:1–51CrossRefPubMedPubMedCentralGoogle Scholar
  43. Houbraken J, Frisvad JC, Samson RA (2010) Sex in Penicillium series roqueforti. IMA Fungus 1:171–180CrossRefPubMedPubMedCentralGoogle Scholar
  44. Hsieh KP, Yu S, Wei YH, Chen CF, Wei RD (1986) Inhibitory effect in vitro of PR toxin, a mycotoxin from Penicillium roqueforti, on the mitochondrial HCO-3-ATPase of the rat brain, heart and kidney. Toxicon 24:153–160CrossRefPubMedGoogle Scholar
  45. Hymery N, Vasseur V, Coton M, Mounier J, Jany JL, Barbier G, Coton E (2014) Filamentous fungi and mycotoxins in cheese: a review. Compr Rev Food Sci Food Saf 13:437–456CrossRefGoogle Scholar
  46. Ismaiel AA, Ahmed AS, El-Sayed e-SR (2014) Optimization of submerged fermentation conditions for immunosuppressant mycophenolic acid production by Penicillium roqueforti isolated from blue-molded cheeses: enhanced production by ultraviolet and gamma irradiation. World J Microbiol Biotechnol 30:2625–2638CrossRefPubMedGoogle Scholar
  47. Kokkonen M, Jestoi M, Rizzo A (2005) Determination of selected mycotoxins in mould cheeses with liquid chromatography coupled to tandem with mass spectrometry. Food Addit Contam 22:449–456CrossRefPubMedGoogle Scholar
  48. Kopp-Holtwiesche B, Rehm HJ (1981) Studies in the inhibition of bacterial macromolecule synthesis by roquefortine, a mycotoxin from Penicillium roqueforti. European J Appl Microbiol Technol 13:232–235CrossRefGoogle Scholar
  49. Kopp-Holtwiesche B, Rehm HJ (1990) Antimicrobial action of roquefortine. J Environ Pathol Toxicol Oncol 10:41–44PubMedGoogle Scholar
  50. Kosalková K, Domínguez-Santos R, Coton M, Coton E, García-Estrada C, Liras P, Martín JF (2015) A natural short pathway synthesizes roquefortine C but not meleagrin in three different Penicillium roqueforti strains. Appl Microbiol Biotechnol 99:7601–7612CrossRefPubMedGoogle Scholar
  51. Kozlovsky AG, Vinokurova NG, Reshetilova TA, Sakharovsky VG, Baskunov BP, Seleznev SG (1994) New metabolites of Penicillium glandicola var. glandicola: glandicoline A and glandicoline B. Appl Biochem Microbiol 30:334–337Google Scholar
  52. Lafont P, Siriwardana MG, Combemale I, Lafont J (1979) Mycophenolic acid in marketed cheeses. Food Cosmet Toxicol 17:147–149CrossRefPubMedGoogle Scholar
  53. Lallès JP (2016) Dairy products and the French paradox: could alkaline phosphatases play a role? Med Hypotheses 92:7–11CrossRefPubMedGoogle Scholar
  54. Lee HJ, Pawlak K, Nguyen BT, Robins RK, Sadée W (1985) Biochemical differences among four inosinate dehydrogenase inhibitors, mycophenolic acid, ribavirin, tiazofurin, and selenazofurin, studied in mouse lymphoma cell culture. Cancer Res 45:5512–5520PubMedGoogle Scholar
  55. López-Díaz TM, Román-Blanco C, García-Arias MT, García-Fernández MC, García-López ML (1996) Mycotoxins in two Spanish cheese varieties. Int J Food Microbiol 30(3):391–395Google Scholar
  56. Martín JF, Coton M (2016) Blue cheese: microbiota and fungal metabolites. In: Frias J, Martínez-Villaluenga C, Peñas E (eds) Fermented foods in health and disease prevention. Elsevier, New York IN PRESSGoogle Scholar
  57. Martín JF, Liras P (2016) Evolutionary formation of gene clusters by reorganization: the meleagrin/roquefortine paradigm in different fungi. Appl Microbiol Biotechnol 100:1579–1587CrossRefPubMedGoogle Scholar
  58. Mioso R, Toledo Marante FJ, Herrera Bravo de Laguna I (2015) Penicillium roqueforti: a multifunctional cell factory of high value-added molecules. J Appl Microbiol 118:781–791CrossRefPubMedGoogle Scholar
  59. Möller T, Akerstrand K, Massoud T (1997) Toxin-producing species of Penicillium and the development of mycotoxins in must and homemade wine. Nat Toxins 5:86–89CrossRefPubMedGoogle Scholar
  60. Moreau S, Gaudemer A, Lablache-Combier A, Biguet J (1976) Metabolites de Penicillium roqueforti: PR toxine et metabolites associes. Tetrahedron Lett 11:833–834CrossRefGoogle Scholar
  61. Moreau S, Lablache-Combier A, Biguet J (1980) Production of eremofortins A, B, and C relative to formation of PR toxin by Penicillium roqueforti. Appl Environ Microbiol 39:770–776PubMedPubMedCentralGoogle Scholar
  62. Moulé Y, Jemmali M, Rousseau N (1976) Mechanism of the inhibition of transcription by PR toxin, a mycotoxin from Penicillium roqueforti. Chem Biol Interact 14:207–216CrossRefPubMedGoogle Scholar
  63. Moulé Y, Moreau S, Bousquet JF (1977) Relationship between the chemical structure and the biological properties of some eremophilane compounds related to PR toxin. Chem Biol Interact 17:185–192CrossRefPubMedGoogle Scholar
  64. Nielsen KF, Dalsgaard PW, Smedsgaard J, Larsen TO (2005) Andrastins A-D, Penicillium roqueforti metabolites consistently produced in blue-mold-ripened cheese. J Agric Food Chem 53:2908–2913CrossRefPubMedGoogle Scholar
  65. Nielsen KF, Sumarah MW, Frisvad JC, Miller JD (2006) Production of metabolites from the Penicillium roqueforti complex. J Agric Food Chem 54:3756–3763CrossRefPubMedGoogle Scholar
  66. O’Brien M, Nielsen KF, O’Kiely P, Forristal PD, Fuller HT, Frisvad JC (2006) Mycotoxins and other secondary metabolites produced in vitro by Penicillium paneum Frisvad and Penicillium roqueforti Thom isolated from baled grass silage in Ireland. J Agric Food Chem 54:9268–9276CrossRefPubMedGoogle Scholar
  67. O’Connor TP, O’Brien NM (2000) Nutritional aspects of cheese. In: Fox PF, Guinee T, Cogan T, McSweeney P (eds) Fundamentals of cheese science. Elsevier Applied Science, Amsterdam, pp. 504–513Google Scholar
  68. Ohmomo S (1982) Indole alkaloids produced by Penicillium roqueforti. J Antibact Antifung Agents 10:253–264Google Scholar
  69. Ohmomo S, Sato T, Utagawa T, Abe M (1975) Isolation of festuclavine and three new indole alkaloids, roquefortine A, B and C from cultures of Penicillium roqueforti. Agr. Biol Chem 39:1333–1334Google Scholar
  70. Ohmomo S, Oguma K, Ohashi T, Abe M (1978) Isolation of a new indole alkaloid, roquefortine D, from the cultures of Penicillium roqueforti. Agric Biol Chem 42:2387–2389Google Scholar
  71. Overy DP, Nielsen KF, Smedsgaard J (2005a) Roquefortine/oxaline biosynthesis pathway metabolites in Penicillium ser. Corymbifera: in planta production and implications for competitive fitness. J Chem Ecol 31:2373–2390CrossRefPubMedGoogle Scholar
  72. Overy DP, Frisvad JC, Steinmeier U, Thrane U (2005b) Clarification of the agents causing blue mold storage rot up on various flower and vegetable bulbs: implications for mycotoxin contamination. Postharvest Biol Technol 35:217–221CrossRefGoogle Scholar
  73. Petyaev IM, Bashmakov YK (2012) Could cheese be the missing piece in the French paradox puzzle? Med Hypotheses 79:746–749CrossRefPubMedGoogle Scholar
  74. Pitt JI (2002) Biology and ecology of toxigenic Penicillium species. Adv Exp Med Biol 504:29–41CrossRefPubMedGoogle Scholar
  75. Polonelli L, Lauriola L, Morace G (1982) Preliminary studies on the carcinogenic effects of Penicillium roqueforti toxin (PR toxin) on rats. Mycopathologia 78:125–127CrossRefPubMedGoogle Scholar
  76. Polonsky J, Merrien MA, Scott PM (1977) Roquefortine and isofumigaclavine A, alkaloids from Penicillium roqueforti. Ann Nutr Aliment 31:963–968PubMedGoogle Scholar
  77. Proctor RH, Hohn TM (1993) Aristolochene synthase. Isolation, characterization, and bacterial expression of a sesquiterpenoid biosynthetic gene (Ari1) from Penicillium roqueforti. J Biol Chem 268:4543–4548PubMedGoogle Scholar
  78. Rand TG, Giles S, Flemming J, Miller JD, Puniani E (2005) Inflammatory and cytotoxic responses in mouse lungs exposed to purified toxins from building isolated Penicillium brevicompactum Dierckx and P. chrysogenum Thom. Toxicol Sci 87:213–222CrossRefPubMedGoogle Scholar
  79. Rasmussen RR, Storm IMLD, Rasmussen PH, Smedsgaard J, Nielsen KF (2010) Multi-mycotoxin analysis of maize silage by LC-MS/MS. Anal Bioanal Chem 397 (2):765–776Google Scholar
  80. Rasmussen RR, Rasmussen PH, Larsen TO, Bladt TT, Binderup ML (2011) In vitro cytotoxicity of fungi spoiling maize silage. Food Chem Toxicol 49:31–44CrossRefPubMedGoogle Scholar
  81. Regueira TB, Kildegaard KR, Hansen BG, Mortensen UH, Hertweck C, Nielsen J (2011) Molecular basis for mycophenolic acid biosynthesis in Penicillium brevicompactum. Appl Environ Microbiol 77:3035–3043CrossRefPubMedPubMedCentralGoogle Scholar
  82. Rho MC, Toyoshima M, Hayashi M, Uchida R, Shiomi K, Komiyama K, Omura S (1998) Enhancement of drug accumulation by andrastin A produced by Penicillium sp. FO-3929 in vincristine-resistant KB cells. J Antibiot (Tokyo) 51:68–72CrossRefGoogle Scholar
  83. Riclea R, Dickschat JS (2015) Identification of intermediates in the biosynthesis of PR toxin by Penicillium roqueforti. Angew Chem Int Ed Engl 54:12167–12170CrossRefPubMedGoogle Scholar
  84. Ries MI, Ali H, Lankhorst PP, Hankemeier T, Bovenberg RA, Driessen AJ, Vreeken RJ (2013) Novel key metabolites reveal further branching of the roquefortine/meleagrin biosynthetic pathway. J Biol Chem 288:37289–37295CrossRefPubMedPubMedCentralGoogle Scholar
  85. Rundberget T, Skaar I, Flaoyen A (2004) The presence of Penicillium and Penicillium mycotoxins in food wastes. Int J Food Microbiol 90:181–188CrossRefPubMedGoogle Scholar
  86. Schneweis I, Meyer K, Hörmansdorfer S, Bauer J (2000) Mycophenolic acid in silage. Appl Environ Microbiol 66:3639–3641CrossRefPubMedPubMedCentralGoogle Scholar
  87. Schoch U, Luthy J, Schlatter C (1984) Mycotoxins in mold-ripened cheese. Mitt Geb Lebensmittelunters Hyg 74:50–59Google Scholar
  88. Scott PM (1981) Toxins of Penicillium species used in cheese manufacture. J Food Prot 44:702–710Google Scholar
  89. Scott PM, Kanhere SR (1979) Instability of PR toxin in blue cheese. J Assoc Off Anal Chem 62:141–147PubMedGoogle Scholar
  90. Scott PM, Kennedy BP, Harwig J, Blanchfield BJ (1977) Study of conditions of production of roquefortine and other metabolites of Penicillin roqueforti. Appl Environ Microbiol 33:249–253PubMedPubMedCentralGoogle Scholar
  91. Teuber M, Engel G (1983) Low risk of mycotoxin production in cheese. Microbiol Aliment Nutr 1:193–197Google Scholar
  92. Tüller G, Armbruster G, Wiedenmann S, Hnichen T, Schams D, Bauer J (1998) Occurrence of roquefortine in silage. Toxicological relevance to sheep. J Anim Physiol Anim Nutr 80:246–249CrossRefGoogle Scholar
  93. Uchida R, Shiomi K, Inokoshi J, Tanaka H, Iwai Y, Omura S (1996a) Andrastin D, novel protein farnesyltransferase inhibitor produced by Penicillium sp. FO-3929. J Antibiot (Tokyo) 49:1278–1280CrossRefGoogle Scholar
  94. Uchida R, Shiomi K, Inokoshi J, Sunazuka T, Tanaka H, Iwai Y, Takayanagi H, Omura S (1996b) Andrastins A-C, new protein farnesyltransferase inhibitors produced by Penicillium sp. FO-3929. II. Structure elucidation and biosynthesis. J Antibiot (Tokyo) 49:418–424CrossRefGoogle Scholar
  95. Ueno Y, Kubota K, Ito T, Nakamura Y (1978) Mutagenicity of carcinogenic mycotoxins in Salmonella typhimurium. Cancer Res 38:3536–3542Google Scholar
  96. Wagener RE, Davis ND, Diener UL (1980) Penitrem A and Roquefortine production by Penicillium commune. Appl Environ Microbiol 39:882–887PubMedPubMedCentralGoogle Scholar
  97. Wei RD, Schnoes HK, Hart PA, Strong FM (1975) The structure of PR-toxin, a mycotoxin from Penicillium roqueforti. Tetrahedron 31:109–114CrossRefGoogle Scholar
  98. Wei RD, Ong TM, Whong WZ, Frezza D, Bronzetti G, Zeiger E (1979) Genetic effects of PR toxin in eukaryotic microorganisms. Environ Mutagen 1:45–53CrossRefPubMedGoogle Scholar
  99. Wei YH, Ding WH, Wei RD (1984) Biochemical effects of PR toxin on rat liver mitochondrial respiration and oxidative phosphorylation. Arch Biochem Biophys 230:400–411CrossRefPubMedGoogle Scholar
  100. Zhang W, Cao S, Qiu L, Qi F, Li Z, Yang Y, Huang S, Bai F, Liu C, Wan X, Li S (2015) Functional characterization of MpaG’, the O-methyltransferase involved in the biosynthesis of mycophenolic acid. Chembiochem 16:565–569CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Instituto de Biotecnología de León, INBIOTECLeónSpain
  2. 2.Área de Microbiología, Departamento de Biología MolecularUniversidad de LeónLeónSpain

Personalised recommendations