Advertisement

Applied Microbiology and Biotechnology

, Volume 101, Issue 1, pp 113–122 | Cite as

Towards novel Cry toxins with enhanced toxicity/broader: a new chimeric Cry4Ba / Cry1Ac toxin

  • Raida Zribi Zghal
  • Jihen Elleuch
  • Mamdouh Ben Ali
  • Frédéric Darriet
  • Ahmed Rebaï
  • Fabrice Chandre
  • Samir Jaoua
  • Slim Tounsi
Biotechnological products and process engineering
  • 497 Downloads

Abstract

Attempts have been made to express or to merge different Cry proteins in order to enhance toxic effects against various insects. Cry1A proteins of Bacillus thuringiensis form a typical bipyramidal parasporal crystal and their protoxins contain a highly conserved C-terminal region. A chimerical gene, called cry(4Ba-1Ac), formed by a fusion of the N-terminus part of cry4Ba and the C-terminus part of cry1Ac, was constructed. Its transformation to an acrystalliferous B. thuringiensis strain showed that it was expressed as a chimerical protein of 116 kDa, assembled in spherical to amorphous parasporal crystals. The chimerical gene cry(4Ba-1Ac) was introduced in a B. thuringiensis kurstaki strain. In the generated crystals of the recombinant strain, the presence of Cry(4Ba-1Ac) was evidenced by MALDI-TOF. The recombinant strain showed an important increase of the toxicity against Culex pipiens larvae (LC50 = 0.84 mg l−1 ± 0.08) compared to the wild type strain through the synergistic activity of Cry2Aa with Cry(4Ba-1Ac). The enhancement of toxicity of B. thuringiensis kurstaki expressing Cry(4Ba-1Ac) compared to that expressing the native toxin Cry4Ba, might be related to its a typical crystallization properties. The developed fusion protein could serve as a potent toxin against different pests of mosquitoes and major crop plants.

Keywords

Bacillus thuringiensis kurstaki Chimerical protein Cry(4Ba-1Ac) Toxicity improvement to Culex pipiens 

Notes

Acknowledgments

This work was supported by grants from the Tunisian Ministry of Higher Education and Scientific Research. The authors wish to thank Dr. Manel Masmoudi, assistant professor in Higher Institute of Biotechnology of Sfax, for her help in samples preparation for examination by scanning electron microscopy. They also wish to thank to Mr. Abdelmajid Dammak for his proofreading of the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declared that they have no conflict of interest.

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Abdullah MA, Alzate O, Mohammad M, McNall RJ, Adang MJ, Dean DH (2003) Introduction of Culex toxicity into Bacillus thuringiensis Cry4Ba by protein engineering. Appl Environ Microbiol 69:5343–5353CrossRefPubMedPubMedCentralGoogle Scholar
  2. Agaisse H, Lereclus D (1995) How does Bacillus thuringiensis produce so much insecticidal crystal protein? J Bacteriol 177:6027–6032CrossRefPubMedPubMedCentralGoogle Scholar
  3. Almond BD, Dean DH (1994) Intracellular proteolysis and limited diversity of the Bacillus thuringiensis CryIA family of the insecticidal crystal proteins. Biochem Bioph Res Co 201:788–794CrossRefGoogle Scholar
  4. Andrews RE, Bibilos MM, Bulla LA (1985) Protease activation of the entomocidal protoxin of B. thuringiensis kurstaki. Appl Environ Microbiol 50:737–742PubMedPubMedCentralGoogle Scholar
  5. Aronson AI (1993) The two faces of Bacillus thuringiensis: insecticidal proteins and post-exponential survival. Mol Microbiol 7:489–496CrossRefPubMedGoogle Scholar
  6. Attia H, Bennasar M, Lagaude A, Hugodo B, Rouviere J, Tarodo B, Fuente DL (1993) Ultrafiltration with microfiltration membrane of acid skimmed and fat-enriched milk coagula: hydrodynamic, microscope and rheological approaches. J Dairy Res 60:161–174CrossRefGoogle Scholar
  7. Bietlot HP, Vishnubhatla I, Carey PR, Pozsgay M, Kaplan H (1990) Characterization of the cysteine residues and disulphide linkages in the protein crystal of Bacillus thuringiensis. Biochem J 267:309–315CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilising the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  9. Carmona AA, Ibarra JE (1999) Expression and crystallization of a Cry3Aa-Cry1Ac chimeric protein of Bacillus thuringiensis. World J Microbiol Biotechnol 15:455–463CrossRefGoogle Scholar
  10. Couche GA, Pfannenstiel MA, Nickerson KW (1987) Structural disulfide bonds in the Bacillus thuringiensis subsp. israelensis protein crystal. J Bacteriol 169:3281–3288CrossRefPubMedPubMedCentralGoogle Scholar
  11. Dammak M, Jaoua S, Tounsi S (2011) Construction of a Bacillus thuringiensis genetically engineered strain harbouring the secreted Cry1Ia delta-endotoxin in its crystal. Biotechnol Lett 33:2367–2372. doi: 10.1007/s10529-011-0716-3 CrossRefPubMedGoogle Scholar
  12. Dastidar PG, Nickerson KW (1979) Interchain crosslinks in the entomocidal Bacillus thuringiensis protein crystal. FEBS Lett 108:411–414CrossRefPubMedGoogle Scholar
  13. DeLano WL (2002) The PyMOL molecular graphics system. San Carlos, CaliforniaGoogle Scholar
  14. Laskowski RA, Rullmannn JA, MacArthur MW, Kaptein R, Thornton JM (1996) AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR 8:477–486CrossRefPubMedGoogle Scholar
  15. Delecluse A, Poncet S, Klier A, Rapoport G (1993) Expression of cryIVA and cryIVB genes, independently or in combination, in a crystal-negative strain of Bacillus thuringiensis subsp. israelensis. Appl Environ Microbiol 59:3922–3927PubMedPubMedCentralGoogle Scholar
  16. de Maagd RA, Bravo A, Berry C, Crickmore N, Schnepf HE (2003) Structure, diversity, and evolution of protein toxins from spore-forming entomopathogenic bacteria. Annu Rev Genet 37:409–433CrossRefPubMedGoogle Scholar
  17. El Khoury M, Azzouz H, Chavanieu A, Abdelmalak N, Chopineau J, Awad MK (2014) Isolation and characterization of a new Bacillus thuringiensis strain lip harboring a new cry1Aa gene highly toxic to Ephestia kuehniella (Lepidoptera: Pyralidae) larvae. Arch Microbiol 196:435–444. doi: 10.1007/s00203-014-0981-3 CrossRefPubMedGoogle Scholar
  18. Elleuch J, Jaoua S, Ginibre C, Chandre F, Tounsi S, Zghal RZ (2016) Toxin stability improvement and toxicity increase against dipteran and lepidopteran larvae of Bacillus thuringiensis crystal protein Cry2Aa. Pest Manag Sci. doi: 10.1002/ps.4261 PubMedGoogle Scholar
  19. Elleuch J, Zghal RZ, Jemaà M, Azzouz H, Tounsi S, Jaoua S (2014) New Bacillus thuringiensis toxin combinations for biological control of lepidopteran larvae. Int J Biol Macromol 65:148–154. doi: 10.1016/j.ijbiomac.2014.01.029 CrossRefPubMedGoogle Scholar
  20. Evdokimov AG, Moshiri F, Sturman EJ, Rydel TJ, Zheng M, Seale JW, Franklin S (2014) Structure of the full-length insecticidal protein Cry1Ac reveals intriguing details of toxin packaging into in vivo formed crystals. Prot Sci 23:1491–1497. doi: 10.1002/pro.2536 CrossRefGoogle Scholar
  21. Fabrick JA, Tabashnik BE (2012) Similar genetic basis of resistance to Bt toxin Cry1Ac in boll-selected and diet-selected strains of pink bollworm. PLoS One. doi: 10.1371/journal.pone.0035658 Google Scholar
  22. Georghiou GP, Wirth MC (1997) Influence of exposure to single versus multiple toxins of Bacillus thuringiensis subsp. israelensis on development of resistance in the mosquito Culex quinquefasciatus (diptera: Culicidae). Appl Environ Microbiol 63:1095–1101PubMedPubMedCentralGoogle Scholar
  23. Hofte H, Whiteley HR (1989) Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol Rev 53:242–255PubMedPubMedCentralGoogle Scholar
  24. Jaoua S, Zouari N, Tounsi S, Ellouz R (1996) Study of the delta-endotoxins produced by three recently isolated strains of Bacillus thuringiensis. FEMS Microbiol Lett 145:349–354Google Scholar
  25. Jurat-Fuentes JL, Gould FL, Adang MJ (2003) Dual resistance to Bacillus thuringiensis Cry1Ac and Cry2Aa toxins in Heliothis virescens suggests multiple mechanisms of resistance. Appl Environ Microbiol 69:5898–5906. doi: 10.1128/AEM.69.10.5898-5906.2003 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Jurat-Fuentes JL, Jackson TA (2012) Bacterial entomopathogens. In: Vega F, Kaya H (eds) Insect pathology. Academic Press, Amsterdam, pp. 265–349CrossRefGoogle Scholar
  27. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophge T4. Nature 227:680–685CrossRefPubMedGoogle Scholar
  28. Luthy P, Ebersold HR (1981) The entomocidal toxins of Bacillus thuringiensis. Pharmacol Ther 13:257–283CrossRefPubMedGoogle Scholar
  29. Naimov S, Martens-Uzunova E, Weemen-Hendriks M, Dukiandjiev S, Minkov I, de Maagd RA (2006) Carboxyterminal extension effects on crystal formation and insecticidal properties of Colorado potato beetle-active Bacillus thuringiensis δ-endotoxins. Mol Biotechnol 32:185–196CrossRefPubMedGoogle Scholar
  30. Park HW, Federici BA (2000) Domain I plays an important role in the crystallization of Cry3A in Bacillus thuringiensis. Mol Biotechnol 16:97–107CrossRefPubMedGoogle Scholar
  31. Poncet S, Bernard C, Dervyn E, Cayley J, Klier A, Rapoport G (1997) Improvement of Bacillus sphaericus toxicity against dipteran larvae by integration, via homologous recombination, of the Cry11A toxin gene from Bacillus thuringiensis subsp. israelensis. Appl Environ Microbiol 63:4413–4420PubMedPubMedCentralGoogle Scholar
  32. Sambrook J, Frish EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor, New YorkGoogle Scholar
  33. Schnepf E, Crickmore N, Vanrie J, Lereclus D, Baum J, Feitelson J, Zeigler DR, Dean DH (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol R 62:775–806Google Scholar
  34. Servant P, Rosso ML, Hamon S, Poncet S, Delécluse A, Rapoport G (1999) Production of Cry11A and Cry11Ba toxins in Bacillus sphaericus confers toxicity towards Aedes aegypti and resistant Culex populations. Appl Environ Microbiol 65:3021–3026PubMedPubMedCentralGoogle Scholar
  35. Shevchenko A, Wilm M, Vorm O, Jensen ON, Podtelejnikov AV, Neubauer G, Mortensen P, Mann M (1996) A strategy for identifying gel-separated proteins in sequence databases by MS alone. Biochem Soc Trans 24:893–896CrossRefPubMedGoogle Scholar
  36. Tajne S, Sanam R, Gundla R, Gandhi NS, Mancera RL, Boddupally D, Vudem DR, Khareedu VR (2012) Molecular modeling of Bt Cry1Ac (DI–DII)-ASAL (Allium sativum lectin)-fusion protein and its interaction with aminopeptidase N (APN) receptor of Manduca sexta. J Mol Graph Model 33:61–76. doi: 10.1016/j.jmgm.2011.11.001 CrossRefPubMedGoogle Scholar
  37. Tounsi S, Dammak M, Rebaî A, Jaoua S (2005) Response of larval Ephestia kuehniella (Lepidoptera: Pyralidae) to individual Bacillus thuringiensis kurstaki toxins and toxin mixtures. Biol Control 35:27–31. doi: 10.1016/j.biocontrol.2005.06.009 CrossRefGoogle Scholar
  38. Tounsi S, Dammak M, Zouari N, Rebaî A, Jaoua S (2006) Evidence of the effect of δ-endotoxin ratio in Bacillus thuringiensis crystals on the toxicity against Ephestia kuehniella. Biol Control 37:243–246. doi: 10.1016/j.biocontrol.2005.12.009 CrossRefGoogle Scholar
  39. Tounsi S, Jaoua S (2003) Characterization of a novel cry2Aa-type gene from Bacillus thuringiensis subsp. kurstaki. Biotechnol Lett 25:1219–1223CrossRefPubMedGoogle Scholar
  40. Tounsi S, J’Mal A, Zouari N, Jaoua S (1999) Cloning and nucleotide sequence of a novel cry1Aa-type gene from Bacillus thuringiensis subsp. kurstaki. Biotechnol Lett 21:771–775CrossRefGoogle Scholar
  41. Travers RS, Martin PAW, Reichelderfer CF (1987) Selective press for efficient isolation of Bacillus spp. Appl Environ Microbiol 53:1263–1266PubMedPubMedCentralGoogle Scholar
  42. Wass MN, Kelley LA, Sternberg MJ (2010) 3DLigandSite: predicting ligand-binding sites using similar structures. Nucleic Acids Res 38:469–473CrossRefGoogle Scholar
  43. WHO (2005) Guidelines for laboratory and field testing of mosquito larvicides. Document WHO/CDS/WHOPES/GCDPP/13. World Health Organization, GenevaGoogle Scholar
  44. Xu D, Jaroszewski L, Li Z, Godzik A (2015) AIDA: ab initio domain assembly for automated multi-domain protein structure prediction and domain–domain interaction prediction. Bioinformatics. doi: 10.1093/bioinformatics/btv092 Google Scholar
  45. Yamamoto T, McLaughlin RE (1981) Isolation of a protein from the parasporal crystal of Bacillus thuringiensis var. kurstaki toxic to the mosquito larva: Aedes taeniorhynchus. Biochem Biophy Res Co 103:414–421CrossRefGoogle Scholar
  46. Zghal RZ, Tounsi S, Jaoua S (2006) Characterization of a cry4Ba-type gene of Bacillus thuringiensis israelensis and evidence of the synergistic larvicidal activity of its encoded protein with Cry2A δ-endotoxin of B. thuringiensis kurstaki on Culex pipiens (common house mosquito). Biotechnol Appl Biochem 44:19–25CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Raida Zribi Zghal
    • 1
  • Jihen Elleuch
    • 1
  • Mamdouh Ben Ali
    • 2
  • Frédéric Darriet
    • 3
  • Ahmed Rebaï
    • 4
  • Fabrice Chandre
    • 3
  • Samir Jaoua
    • 5
  • Slim Tounsi
    • 1
  1. 1.Laboratory of Biopesticides, Centre of Biotechnology of SfaxUniversity of SfaxSfaxTunisia
  2. 2.Laboratoire de Microorganismes et de Biomolécules, Centre de Biotechnologie de SfaxUniversité de SfaxSfaxTunisia
  3. 3.Institut de Recherche pour le Développement (IRD), UMR MIVEGEC (UM1-UM2-CNRS 5290-IRD 224) Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle, Laboratoire de Lutte contre les Insectes Nuisibles (LIN)MontpellierFrance
  4. 4.Research Group on Molecular and Cellular Screening Processes, Laboratory of Microorganisms and Biomolecules, Centre of Biotechnology of SfaxSfaxTunisia
  5. 5.Biological & Environmental Sciences Department, College of Arts and SciencesQatar UniversityDohaQatar

Personalised recommendations