Applied Microbiology and Biotechnology

, Volume 100, Issue 21, pp 9283–9293 | Cite as

Identification of antibacterial peptides from endophytic microbiome

  • M. V. TejesviEmail author
  • P. Picart
  • M. Kajula
  • H. Hautajärvi
  • L. Ruddock
  • H.H. Kristensen
  • A. Tossi
  • H.G. Sahl
  • S. Ek
  • S. Mattila
  • A. M. Pirttilä
Applied microbial and cell physiology


Endophytes, microorganisms living inside plant tissues, are promising producers of lead compounds for the pharmaceutical industry. However, the majority of endophytes are unculturable and therefore inaccessible for functional studies. To evaluate genetic resources of endophytes, we analyzed the biodiversity of fungal microbiome of black crowberry (Empetrum nigrum L.) by next-generation sequencing and found that it consists mainly of unknown taxa. We then separated the host and the endophyte genomes and constructed a fosmid expression library from the endophytic DNA. This library was screened for antibacterial activity against Staphylococcus aureus. A unique antibacterial clone was selected for further analysis, and a gene En-AP1 was identified with no similarity to known sequences. The expressed, folded protein En-AP1 was not active against S. aureus, while tryptic digests exhibited antimicrobial activity. Seven out of twelve synthesized peptides, predicted antibacterial in silico, exhibited in vitro activity towards both S. aureus and Escherichia coli. We propose that the En-AP1 protein is degraded in the library host E. coli and antimicrobial fragments are released from the cell, explaining the in vitro antibacterial activity of the clone. This is the first report of a novel gene expressed in vitro derived from an endophytic microbiome, demonstrating the potential of finding novel genes and compounds from unculturable endophytes.


Antimicrobial peptide Unculturable Endophyte Microbiome 



The work was funded by the Marie Curie Industry-Academia Partnership and Pathways (IAPP) of the EU 7th Framework Programme, New Antimicrobials (NAM) Project (PIAP-GA-2008-218191) and PIIF-GA-2008-220253.

Authors’ contributions

MVT, PP and AMP designed the study. MVT and PP performed molecular lab experiments. AMP, LR, AT, HHS, and HHK provided reagents, materials and scientific input to the study. MK, HH, SK, and SM performed HPLC and MS experiments. MVT analyzed experiments and prepared figures. MVT, PP, and AMP wrote the manuscript. All authors revised the manuscript. All authors read and approved the final manuscript.

Compliance with ethical standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

253_2016_7765_MOESM1_ESM.pdf (391 kb)
ESM 1 (PDF 390 kb)


  1. Almaas H, Eriksen E, Sekse C, Comi I, Flengsrud R, Holm H, Jensen E, Jacobsen M, Langsrud T, Vegarud GE (2011) Antibacterial peptides derived from caprine whey proteins, by digestion with human gastrointestinal juice. Br J Nutr 106:896–905CrossRefPubMedGoogle Scholar
  2. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410CrossRefPubMedGoogle Scholar
  3. Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169PubMedPubMedCentralGoogle Scholar
  4. Andersen JH, Jenssen H, Sandvik K, Gutteberg TJ (2004) Anti-HSV activity of lactoferrin and lactoferricin is dependent on the presence of heparan sulphate at the cell surface. J Med Virol 74:262–271CrossRefPubMedGoogle Scholar
  5. Andersen AS, Sandvang D, Schnorr KM, Kruse T, Neve S, Joergensen B, Karlsmark T, Krogfelt KA (2010) A novel approach to the antimicrobial activity of maggot debridement therapy. J Antimicrob Chemother 65:1646–1654CrossRefPubMedPubMedCentralGoogle Scholar
  6. Artimo P, Jonnalagedda M, Arnold K, Baratin D, Csardi G, de Castro E, Duvaud S, Flegel V, Fortier A, Gasteiger E, Grosdidier A, Hernandez C, Ioannidis V, Kuznetsov D, Liechti R, Moretti S, Mostaguir K, Redaschi N, Rossier G, Xenarios I, Stockinger H (2012) ExPASy: SIB bioinformatics resource portal. Nucleic Acids Res 40:W597–W603CrossRefPubMedPubMedCentralGoogle Scholar
  7. Avrova A, Knogge W (2012) Rhynchosporium commune: a persistent threat to barley cultivation. Mol Plant Pathol 13:986–997CrossRefPubMedGoogle Scholar
  8. Balint M, Tiffin P, Hallstrom B, O'Hara RB, Olson MS, Fankhauser JD, Piepenbring M, Schmitt I (2013) Host genotype shapes the foliar fungal microbiome of balsam poplar (Populus balsamifera). PLoS One 8:e53987CrossRefPubMedPubMedCentralGoogle Scholar
  9. Banik JJ, Brady SF (2010) Recent application of metagenomic approaches toward the discovery of antimicrobials and other bioactive small molecules. Curr Opin Microbiol 13:603–609CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bara R, Aly AH, Pretsch A, Wray V, Wang B, Proksch P, Debbab A (2013) Antibiotically active metabolites from Talaromyces wortmannii, an endophyte of Aloe vera. J Antibiot (Tokyo) 66:491–493Google Scholar
  11. Baumann P (2005) Biology bacteriocyte-associated endosymbionts of plant sap-sucking insects. Annu Rev Microbiol 59:155–189CrossRefPubMedGoogle Scholar
  12. Boman HG (2003) Antibacterial peptides: basic facts and emerging concepts. J Intern Med 254:197–215CrossRefPubMedGoogle Scholar
  13. Brady SF (2007) Construction of soil environmental DNA cosmid libraries and screening for clones that produce biologically active small molecules. Nat Protoc 2:1297–1305CrossRefPubMedGoogle Scholar
  14. Buee M, Reich M, Murat C, Morin E, Nilsson RH, Uroz S, Martin F (2009) 454 pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity. New Phytol 184:449–456CrossRefPubMedGoogle Scholar
  15. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight R (2011) Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci U S A 108(Suppl 1):4516–4522CrossRefPubMedGoogle Scholar
  16. Cowan D, Meyer Q, Stafford W, Muyanga S, Cameron R, Wittwer P (2005) Metagenomic gene discovery: past, present and future. Trends Biotechnol 23:321–329. doi: 10.1016/j.tibtech.2005.04.001 CrossRefPubMedGoogle Scholar
  17. Duong LM, Jeewon R, Lumyong S, Hyde KD (2006) DGGE coupled with ribosomal DNA gene phylogenies reveal uncharacterized fungal phylotypes. Fungal Diversity 23:121–138Google Scholar
  18. Emanuelsson O, Brunak S, von Heijne G, Nielsen H (2007) Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc 2:953–971CrossRefPubMedGoogle Scholar
  19. Finn RD, Tate J, Mistry J, Coggill PC, Sammut SJ, Hotz HR, Ceric G, Forslund K, Eddy SR, Sonnhammer EL, Bateman A (2008) The Pfam protein families database. Nucleic Acids Res 36:D281–D288CrossRefPubMedGoogle Scholar
  20. Frank J, Crous PW, Groenewald JZ, Oertel B, Hyde KD, Phengsintham P, Schroers HJ (2010) Microcyclospora and Microcyclosporella: novel genera accommodating epiphytic fungi causing sooty blotch on apple. Persoonia 24:93–105CrossRefPubMedPubMedCentralGoogle Scholar
  21. Fu J, Bian X, Hu S, Wang H, Huang F, Seibert PM, Plaza A, Xia L, Muller R, Stewart AF, Zhang Y (2012) Full-length RecE enhances linear-linear homologous recombination and facilitates direct cloning for bioprospecting. Nat Biotechnol 30:440–446CrossRefPubMedGoogle Scholar
  22. Galvao TC, Mohn WW, de Lorenzo V (2005) Exploring the microbial biodegradation and biotransformation gene pool. Trends Biotechnol 23:497–506CrossRefPubMedGoogle Scholar
  23. Geddy R, Brown GG (2007) Genes encoding pentatricopeptide repeat (PPR) proteins are not conserved in location in plant genomes and may be subject to diversifying selection. BMC Genomics 8:130CrossRefPubMedPubMedCentralGoogle Scholar
  24. Gifford JL, Hunter HN, Vogel HJ (2005) Lactoferricin: a lactoferrin-derived peptide with antimicrobial, antiviral, antitumor and immunological properties. Cell Mol Life Sci 62:2588–2598CrossRefPubMedGoogle Scholar
  25. Hardoim PR, van Overbeek LS, Berg G, Pirttila AM, Compant S, Campisano A, Doring M, Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79:293–320CrossRefPubMedPubMedCentralGoogle Scholar
  26. Higgins KL, Arnold AE, Miadlikowska J, Sarvate SD, Lutzoni F (2007) Phylogenetic relationships, host affinity, and geographic structure of boreal and arctic endophytes from three major plant lineages. Mol Phylogenet Evol 42:543–555CrossRefPubMedGoogle Scholar
  27. Hyde KD, Soytong K (2008) The fungal endophyte dilemma. Fungal Diversity 33:163–173Google Scholar
  28. Ihrmark K, Bodeker IT, Cruz-Martinez K, Friberg H, Kubartova A, Schenck J, Strid Y, Stenlid J, Brandstrom-Durling M, Clemmensen KE, Lindahl BD (2012) New primers to amplify the fungal ITS2 region—evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiol Ecol 82:666–677CrossRefPubMedGoogle Scholar
  29. Koljalg U, Nilsson RH, Abarenkov K, Tedersoo L, Taylor AF, Bahram M, Bates ST, Bruns TD, Bengtsson-Palme J, Callaghan TM, Douglas B, Drenkhan T, Eberhardt U, Duenas M, Grebenc T, Griffith GW, Hartmann M, Kirk PM, Kohout P, Larsson E, Lindahl BD, Lucking R, Martin MP, Matheny PB, Nguyen NH, Niskanen T, Oja J, Peay KG, Peintner U, Peterson M, Poldmaa K, Saag L, Saar I, Schussler A, Scott JA, Senes C, Smith ME, Suija A, Taylor DL, Telleria MT, Weiss M, Larsson KH (2013) Towards a unified paradigm for sequence-based identification of fungi. Mol Ecol 22:5271–5277CrossRefPubMedGoogle Scholar
  30. Koskimäki JJ, Nylund S, Suorsa M, Pirttilä AM (2010) Mycobacterial endophytes are enriched during micropropagation of Pogonatherum paniceum. environmental microbiology reports 2:619–624CrossRefPubMedGoogle Scholar
  31. Kusari S, Zuhlke S, Spiteller M (2011) Effect of artificial reconstitution of the interaction between the plant Camptotheca acuminata and the fungal endophyte Fusarium solani on camptothecin biosynthesis. J Nat Prod 74:764–775CrossRefPubMedGoogle Scholar
  32. Ling LL, Schneider T, Peoples AJ, Spoering AL, Engels I, Conlon BP, Mueller A, Schaberle TF, Hughes DE, Epstein S, Jones M, Lazarides L, Steadman VA, Cohen DR, Felix CR, Fetterman KA, Millett WP, Nitti AG, Zullo AM, Chen C, Lewis K (2015) Erratum: A new antibiotic kills pathogens without detectable resistance. Nature 520:388CrossRefPubMedGoogle Scholar
  33. Lorenz P, Liebeton K, Niehaus F, Eck J (2002) Screening for novel enzymes for biocatalytic processes: accessing the metagenome as a resource of novel functional sequence space. Curr Opin Biotechnol 13:572–577CrossRefPubMedGoogle Scholar
  34. Martin F, Cullen D, Hibbett D, Pisabarro A, Spatafora JW, Baker SE, Grigoriev IV (2011) Sequencing the fungal tree of life. New Phytol 190:818–821CrossRefPubMedGoogle Scholar
  35. McCutcheon AR, Stokes RW, Thorson LM, Ellis SM, Hancock REW, Towers GHN (1997) Anti-mycobacterial screening of british columbian medicinal plants. Pharmaceutical Biology 35:77–83CrossRefGoogle Scholar
  36. Mitchell AM, Strobel GA, Hess WM, Vargas PN, Ezra D (2008) Muscodor crispans, a novel endophyte from Ananas ananassoides in the Bolivian Amazon. Fungal Diversity 31:37–43Google Scholar
  37. National Research Council (US) (2007) Committee on Metagenomics. In: Challenges and functional applicationsGoogle Scholar
  38. Nikolcheva LG, Bärlocher F (2004) Taxon-specific fungal primers reveal unexpectedly high diversity during leaf decomposition in a stream. Mycological Progress 3:41–49CrossRefGoogle Scholar
  39. Ondov BD, Bergman NH, Phillippy AM (2011) Interactive metagenomic visualization in a Web browser. BMC Bioinformatics 12:385-2105–3812-385CrossRefGoogle Scholar
  40. Owen JG, Robins KJ, Parachin NS, Ackerley DF (2012) A functional screen for recovery of 4-phosphopantetheinyl transferase and associated natural product biosynthesis genes from metagenome libraries. Environ Microbiol 14:1198–1209CrossRefPubMedGoogle Scholar
  41. Park SH, Cheong DE, Lee JY, Han SS, Lee JH, Kim GJ (2007) Analyses of the structural organization of unidentified open reading frames from metagenome. Biochem Biophys Res Commun 356:961–967CrossRefPubMedGoogle Scholar
  42. Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) Signal P 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786CrossRefPubMedGoogle Scholar
  43. Pirttilä AM, Kämäräinen T, Hirsikorpi M, Jaakola L, Hohtola A (2001) DNA isolation methods for medicinal and aromatic plants. Plant molecular biology report 19: a-fGoogle Scholar
  44. Saha D, Prasad AM, Srinivasan R (2007) Pentatricopeptide repeat proteins and their emerging roles in plants. Plant Physiol Biochem 45:521–534CrossRefPubMedGoogle Scholar
  45. Salanoubat M, Genin S, Artiguenave F, Gouzy J, Mangenot S, Arlat M, Billault A, Brottier P, Camus JC, Cattolico L, Chandler M, Choisne N, Claudel-Renard C, Cunnac S, Demange N, Gaspin C, Lavie M, Moisan A, Robert C, Saurin W, Schiex T, Siguier P, Thebault P, Whalen M, Wincker P, Levy M, Weissenbach J, Boucher CA (2002) Genome sequence of the plant pathogen Ralstonia solanacearum. Nature 415:497–502CrossRefPubMedGoogle Scholar
  46. Schloss PD, Handelsman J (2003) Biotechnological prospects from metagenomics. Curr Opin Biotechnol 14:303–310CrossRefPubMedGoogle Scholar
  47. Schneider T, Kruse T, Wimmer R, Wiedemann I, Sass V, Pag U, Jansen A, Nielsen AK, Mygind PH, Raventos DS, Neve S, Ravn B, Bonvin AM, De Maria L, Andersen AS, Gammelgaard LK, Sahl HG, Kristensen HH (2010) Plectasin, a fungal defensin, targets the bacterial cell wall precursor Lipid II. Science 328:1168–1172CrossRefPubMedGoogle Scholar
  48. Schulz B, Boyle C (2005) The endophytic continuum. Mycol Res 109:661–686CrossRefPubMedGoogle Scholar
  49. Seena S, Wynberg N, Bärlocher F (2008) Fungal diversity during leaf decomposition in a stream assessed through clone libraries. Fungal Diversity 30:1–14Google Scholar
  50. Sessitsch A, Hardoim P, Doring J, Weilharter A, Krause A, Woyke T, Mitter B, Hauberg-Lotte L, Friedrich F, Rahalkar M, Hurek T, Sarkar A, Bodrossy L, van Overbeek L, Brar D, van Elsas JD, Reinhold-Hurek B (2012) Functional characteristics of an endophyte community colonizing rice roots as revealed by metagenomic analysis. Mol Plant Microbe Interact 25:28–36CrossRefPubMedGoogle Scholar
  51. Shang D, Sun Y, Wang C, Ma L, Li J, Wang X (2012) Rational design of anti-microbial peptides with enhanced activity and low cytotoxicity based on the structure of the arginine/histidine-rich peptide, chensinin-1. J Appl Microbiol 113:677–685CrossRefPubMedGoogle Scholar
  52. Shin K, Yamauchi K, Teraguchi S, Hayasawa H, Tomita M, Otsuka Y, Yamazaki S (1998) Antibacterial activity of bovine lactoferrin and its peptides against enterohaemorrhagic Escherichia coli O157:H7. Lett Appl Microbiol 26:407–411CrossRefPubMedGoogle Scholar
  53. Silphaduang U, Hincke MT, Nys Y, Mine Y (2006) Antimicrobial proteins in chicken reproductive system. Biochem Biophys Res Commun 340:648–655CrossRefPubMedGoogle Scholar
  54. Studier FW, Rosenberg AH, Dunn JJ, Dubendorff JW (1990) Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol 185:60–89CrossRefPubMedGoogle Scholar
  55. Tejesvi MV, Ruotsalainen AL, Markkola AM, Pirttilä AM (2010) Root endophytes along a primary succession gradient in Northern Finland. Fungal Diversity 41:125–134CrossRefGoogle Scholar
  56. Thevenet P, Shen Y, Maupetit J, Guyon F, Derreumaux P, Tuffery P (2012) PEP-FOLD: an updated de novo structure prediction server for both linear and disulfide bonded cyclic peptides. Nucleic Acids Res 40:W288–W293CrossRefPubMedPubMedCentralGoogle Scholar
  57. Travadon R, Lawrence DP, Rooney-Latham S, Gubler WD, Wilcox WF, Rolshausen PE, Baumgartner K (2015) Cadophora species associated with wood-decay of grapevine in North America. Fungal Biol 119:53–66CrossRefPubMedGoogle Scholar
  58. Turnbaugh PJ, Gordon JI (2008) An invitation to the marriage of metagenomics and metabolomics. Cell 134:708–713CrossRefPubMedGoogle Scholar
  59. Unterseher M, Jumpponen A, Opik M, Tedersoo L, Moora M, Dormann CF, Schnittler M (2011) Species abundance distributions and richness estimations in fungal metagenomics—lessons learned from community ecology. Mol Ecol 20:275–285CrossRefPubMedGoogle Scholar
  60. van Lith M, Karala AR, Bown D, Gatehouse JA, Ruddock LW, Saunders PT, Benham AM (2007) A developmentally regulated chaperone complex for the endoplasmic reticulum of male haploid germ cells. Mol Biol Cell 18:2795–2804CrossRefPubMedPubMedCentralGoogle Scholar
  61. Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci U S A 95:6578–6583CrossRefPubMedPubMedCentralGoogle Scholar
  62. Wild J, Hradecna Z, Szybalski W (2002) Conditionally amplifiable BACs: switching from single-copy to high-copy vectors and genomic clones. Genome Res 12:1434–1444CrossRefPubMedPubMedCentralGoogle Scholar
  63. Zgoda JR, Porter JR (2001) A convenient microdilution method for screening natural products against bacteria and fungi. Pharmaceutical Biology 39:221–225CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Genetics and PhysiologyUniversity of OuluOuluFinland
  2. 2.Pharmaceutical Microbiology Section, Institute for Medical Microbiology, Immunology, and ParasitologyUniversity of BonnBonnGermany
  3. 3.Admescope LtdOuluFinland
  4. 4.Biochemistry and Molecular MedicineUniversity of OuluOuluFinland
  5. 5.Novozymes ASBagsvaerdDenmark
  6. 6.Department of BiochemistryUniversity of TriesteTriesteItaly
  7. 7.Molecular MaterialsUniversity of OuluOuluFinland

Personalised recommendations