Advertisement

Applied Microbiology and Biotechnology

, Volume 100, Issue 18, pp 7815–7825 | Cite as

Targeting bactoprenol-coupled cell envelope precursors

  • Hannah Ulm
  • Tanja SchneiderEmail author
Mini-Review

Abstract

Targeting the bactoprenol-coupled cell wall precursor lipid II is a validated antibacterial strategy. In this review, selected prototype lipid II-binding antibiotics of different chemical classes are discussed. Although these compounds attack the same molecular target, they trigger nuanced and diverse cellular effects. Consequently, the mechanisms of antibacterial resistance and the likelihood of resistance development may vary substantially.

Keywords

Resistance Antibiotics Lipid II Cell wall Bactoprenol-phosphate 

Notes

Compliance with ethical standards

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Alifax PR, Chevalier R (1962) Etude de la nisinase produite par Streptococcus thermophilus. J Dairy Res 29:233–240. doi: 10.1017/S0022029900011043 Google Scholar
  2. Allen NE, Nicas TI (2003) Mechanism of action of oritavancin and related glycopeptide antibiotics. FEMS Microbiol Rev 26:511–532. doi: 10.1111/j.1574-6976.2003.tb00628.x PubMedCrossRefGoogle Scholar
  3. Belas R, Manos J, Suvanasuthi R (2004) Proteus mirabilis ZapA metalloprotease degrades a broad spectrum of substrates, including antimicrobial peptides. Infect Immun 72:5159–5167. doi: 10.1128/IAI.72.9.5159-5167.2004 PubMedPubMedCentralCrossRefGoogle Scholar
  4. Belley A, McKay GA, Arhin FF, Sarmiento I, Beaulieu S, Fadhil I, Parr TR, Moeck G (2010) Oritavancin disrupts membrane integrity of Staphylococcus aureus and vancomycin-resistant enterococci to effect rapid bacterial killing. Antimicrob Agents Chemother 54:5369–5371. doi: 10.1128/AAC.00760-10 PubMedPubMedCentralCrossRefGoogle Scholar
  5. Belley A, Neesham-Grenon E, McKay G, Arhin FF, Harris R, Beveridge T, Parr TR, Moeck G (2009) Oritavancin kills stationary-phase and biofilm Staphylococcus aureus cells in vitro. Antimicrob Agents Chemother 53:918–925. doi: 10.1128/AAC.00766-08 PubMedCrossRefGoogle Scholar
  6. Bell G, Gouyon PH (2003) Arming the enemy: the evolution of resistance to self-proteins. Microbiol Read Engl 149:1367–1375. doi: 10.1099/mic.0.26265-0 CrossRefGoogle Scholar
  7. Bhullar K, Waglechner N, Pawlowski A, Koteva K, Banks ED, Johnston MD, Barton HA, Wright GD (2012) Antibiotic resistance is prevalent in an isolated cave microbiome. PLoS One 7:e34953. doi: 10.1371/journal.pone.0034953 PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bierbaum G, Sahl HG (2009) Lantibiotics: mode of action, biosynthesis and bioengineering. Curr Pharm Biotechnol 10:2–18PubMedCrossRefGoogle Scholar
  9. Binda E, Marinelli F, Marcone GL (2014) Old and new glycopeptide antibiotics: action and resistance. Antibiotics 3:572–594. doi: 10.3390/antibiotics3040572 PubMedPubMedCentralCrossRefGoogle Scholar
  10. Blais J, Lewis SR, Krause KM, Benton BM (2012) Antistaphylococcal activity of TD-1792, a multivalent glycopeptide-cephalosporin antibiotic. Antimicrob Agents Chemother 56:1584–1587. doi: 10.1128/AAC.05532-11 PubMedPubMedCentralCrossRefGoogle Scholar
  11. Boakes S, Weiss WJ, Vinson M, Wadman S, Dawson MJ (2016) Antibacterial activity of the novel semisynthetic lantibiotic NVB333 in vitro and in experimental infection models. J Antibiot (Tokyo). doi: 10.1038/ja.2016.47. Google Scholar
  12. Bonelli RR, Schneider T, Sahl HG, Wiedemann I (2006) Insights into in vivo activities of lantibiotics from gallidermin and epidermin mode-of-action studies. Antimicrob Agents Chemother 50:1449–1457. doi: 10.1128/AAC.50.4.1449-1457.2006 PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bonev BB, Breukink E, Swiezewska E, de Kruijff B, Watts A (2004) Targeting extracellular pyrophosphates underpins the high selectivity of nisin. FASEB J Off Publ Fed Am Soc Exp Biol 18:1862–1869. doi: 10.1096/fj.04-2358com Google Scholar
  14. Bouhss A, Trunkfield AE, Bugg TDH, Mengin-Lecreulx D (2008) The biosynthesis of peptidoglycan lipid-linked intermediates. FEMS Microbiol Rev 32:208–233. doi: 10.1111/j.1574-6976.2007.00089.x PubMedCrossRefGoogle Scholar
  15. Breukink E, Wiedemann I, van Kraaij C, Kuipers OP, Sahl HG, de Kruijff B (1999) Use of the cell wall precursor lipid II by a pore-forming peptide antibiotic. Science 286:2361–2364PubMedCrossRefGoogle Scholar
  16. Brötz H, Josten M, Wiedemann I, Schneider U, Götz F, Bierbaum G, Sahl HG (1998) Role of lipid-bound peptidoglycan precursors in the formation of pores by nisin, epidermin and other lantibiotics. Mol Microbiol 30:317–327PubMedCrossRefGoogle Scholar
  17. Bugg TD, Wright GD, Dutka-Malen S, Arthur M, Courvalin P, Walsh CT (1991) Molecular basis for vancomycin resistance in Enterococcus faecium BM4147: biosynthesis of a depsipeptide peptidoglycan precursor by vancomycin resistance proteins VanH and VanA. Biochemistry (Mosc) 30:10408–10415CrossRefGoogle Scholar
  18. Castiglione F, Lazzarini A, Carrano L, Corti E, Ciciliato I, Gastaldo L, Candiani P, Losi D, Marinelli F, Selva E, Parenti F (2008) Determining the structure and mode of action of microbisporicin, a potent lantibiotic active against multiresistant pathogens. Chem Biol 15:22–31. doi: 10.1016/j.chembiol.2007.11.009 PubMedCrossRefGoogle Scholar
  19. Chernysh S, Gordya N, Suborova T (2015) Insect antimicrobial peptide complexes prevent resistance development in bacteria. PLoS One 10. doi: 10.1371/journal.pone.0130788
  20. Cui L, Tominaga E, Neoh H, Hiramatsu K (2006) Correlation between reduced daptomycin susceptibility and vancomycin resistance in vancomycin-intermediate Staphylococcus aureus. Antimicrob Agents Chemother 50:1079–1082. doi: 10.1128/AAC.50.3.1079-1082.2006 PubMedPubMedCentralCrossRefGoogle Scholar
  21. de Leeuw E, Li C, Zeng P, Li C, Diepeveen-de Buin M, WY L, Breukink E, Lu W (2010) Functional interaction of human neutrophil peptide-1 with the cell wall precursor lipid II. FEBS Lett 584:1543–1548. doi: 10.1016/j.febslet.2010.03.004 PubMedPubMedCentralCrossRefGoogle Scholar
  22. Delves-Broughton J, Blackburn P, Evans RJ, Hugenholtz J (1996) Applications of the bacteriocin, nisin. Antonie Van Leeuwenhoek 69:193–202. doi: 10.1007/BF00399424 PubMedCrossRefGoogle Scholar
  23. de Oliveira Dias R, Franco OL (2015) Cysteine-stabilized αβ defensins: from a common fold to antibacterial activity. Peptides 72:64–72. doi: 10.1016/j.peptides.2015.04.017 CrossRefGoogle Scholar
  24. Dintner S, Staroń A, Berchtold E, Petri T, Mascher T, Gebhard S (2011) Coevolution of ABC transporters and two-component regulatory systems as resistance modules against antimicrobial peptides in Firmicutes bacteria. J Bacteriol 193:3851–3862. doi: 10.1128/JB.05175-11 PubMedPubMedCentralCrossRefGoogle Scholar
  25. Dobson AJ, Purves J, Kamysz W, Rolff J (2013) Comparing selection on S. aureus between antimicrobial peptides and common antibiotics. PLoS One 8. doi: 10.1371/journal.pone.0076521
  26. Domenech O, Francius G, Tulkens PM, van Bambeke F, Dufrêne Y, Mingeot-Leclercq MP (2009) Interactions of oritavancin, a new lipoglycopeptide derived from vancomycin, with phospholipid bilayers: effect on membrane permeability and nanoscale lipid membrane organization. Biochim Biophys Acta BBA - Biomembr 1788:1832–1840. doi: 10.1016/j.bbamem.2009.05.003 CrossRefGoogle Scholar
  27. Draper LA, Ross RP, Hill C, Cotter PD (2008) Lantibiotic immunity. Curr Protein Pept Sci 9:39–49PubMedCrossRefGoogle Scholar
  28. Ernst CM, Peschel A (2011) Broad-spectrum antimicrobial peptide resistance by MprF-mediated aminoacylation and flipping of phospholipids. Mol Microbiol 80:290–299. doi: 10.1111/j.1365-2958.2011.07576.x PubMedCrossRefGoogle Scholar
  29. Fleitas O, Franco OL (2016) Induced bacterial cross-resistance toward host antimicrobial peptides: a worrying phenomenon. Front Microbiol 7. doi: 10.3389/fmicb.2016.00381
  30. Foucault ML, Courvalin P, Grillot-Courvalin C (2009) Fitness cost of VanA-type vancomycin resistance in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 53:2354–2359. doi: 10.1128/AAC.01702-08 PubMedPubMedCentralCrossRefGoogle Scholar
  31. Foucault ML, Depardieu F, Courvalin P, Grillot-Courvalin C (2010) Inducible expression eliminates the fitness cost of vancomycin resistance in enterococci. Proc Natl Acad Sci U S A 107:16964–16969. doi: 10.1073/pnas.1006855107 PubMedPubMedCentralCrossRefGoogle Scholar
  32. Fulco P, Wenzel RP (2006) Ramoplanin: a topical lipoglycodepsipeptide antibacterial agent. Expert Rev Anti-Infect Ther 4:939–945. doi: 10.1586/14787210.4.6.939 PubMedCrossRefGoogle Scholar
  33. Ganz T (2003) Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol 3:710–720. doi: 10.1038/nri1180 PubMedCrossRefGoogle Scholar
  34. Gebhard S (2012) ABC transporters of antimicrobial peptides in Firmicutes bacteria—phylogeny, function and regulation. Mol Microbiol 86:1295–1317. doi: 10.1111/mmi.12078 PubMedCrossRefGoogle Scholar
  35. Ghobrial O, Derendorf H, Hillman JD (2010) Pharmacokinetic and pharmacodynamic evaluation of the lantibiotic MU1140. J Pharm Sci 99:2521–2528. doi: 10.1002/jps.22015 PubMedCrossRefGoogle Scholar
  36. Ghobrial OG, Derendorf H, Hillman JD (2009) Pharmacodynamic activity of the lantibiotic MU1140. Int J Antimicrob Agents 33:70–74. doi: 10.1016/j.ijantimicag.2008.07.028 PubMedCrossRefGoogle Scholar
  37. Gravesen A, Kallipolitis B, Holmstrøm K, Høiby PE, Ramnath M, Knøchel S (2004) pbp2229-mediated nisin resistance mechanism in Listeria monocytogenes confers cross-protection to class IIa bacteriocins and affects virulence gene expression. Appl Environ Microbiol 70:1669–1679. doi: 10.1128/AEM.70.3.1669-1679.2004 PubMedPubMedCentralCrossRefGoogle Scholar
  38. Gravesen A, Sørensen K, Aarestrup FM, Knøchel S (2001) Spontaneous nisin-resistant Listeria monocytogenes mutants with increased expression of a putative penicillin-binding protein and their sensitivity to various antibiotics. Microb Drug Resist 7:127–135. doi: 10.1089/10766290152045002 PubMedCrossRefGoogle Scholar
  39. Guo H, Yi W, Song JK, Wang PG (2008) Current understanding on biosynthesis of microbial polysaccharides. Curr Top Med Chem 8:141–151PubMedCrossRefGoogle Scholar
  40. Habets MGJL, Brockhurst MA (2012) Therapeutic antimicrobial peptides may compromise natural immunity. Biol Lett 8:416–418. doi: 10.1098/rsbl.2011.1203 PubMedPubMedCentralCrossRefGoogle Scholar
  41. Harris LJ, Fleming HP, Klaenhammer TR (1991) Sensitivity and resistance of Listeria monocytogenes ATCC 19115, Scott a, and UAL500 to nisin. J Food Prot 54:836–840Google Scholar
  42. Higgins DL, Chang R, Debabov DV, Leung J, Wu T, Krause KM, Sandvik E, Hubbard JM, Kaniga K, Schmidt DE, Gao Q, Cass RT, Karr DE, Benton BM, Humphrey PP (2005) Telavancin, a multifunctional lipoglycopeptide, disrupts both cell wall synthesis and cell membrane integrity in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 49:1127–1134. doi: 10.1128/AAC.49.3.1127-1134.2005 PubMedPubMedCentralCrossRefGoogle Scholar
  43. Hiramatsu K, Kayayama Y, Matsuo M, Aiba Y, Saito M, Hishinuma T, Iwamoto A (2014) Vancomycin-intermediate resistance in Staphylococcus aureus. J Glob Antimicrob Resist 2:213–224. doi: 10.1016/j.jgar.2014.04.006 CrossRefGoogle Scholar
  44. Hiron A, Falord M, Valle J, Débarbouillé M, Msadek T (2011) Bacitracin and nisin resistance in Staphylococcus aureus: a novel pathway involving the BraS/BraR two-component system (SA2417/SA2418) and both the BraD/BraE and VraD/VraE ABC transporters. Mol Microbiol 81:602–622. doi: 10.1111/j.1365-2958.2011.07735.x PubMedCrossRefGoogle Scholar
  45. Hsu STD, Breukink E, Tischenko E, Lutters MAG, de Kruijff B, Kaptein R, Bonvin AMJJ, van Nuland NAJ (2004) The nisin–lipid II complex reveals a pyrophosphate cage that provides a blueprint for novel antibiotics. Nat Struct Mol Biol 11:963–967. doi: 10.1038/nsmb830 PubMedCrossRefGoogle Scholar
  46. Jabés D, Brunati C, Candiani G, Riva S, Romanó G, Donadio S (2011) Efficacy of the new lantibiotic NAI-107 in experimental infections induced by multidrug-resistant gram-positive pathogens. Antimicrob Agents Chemother 55:1671–1676. doi: 10.1128/AAC.01288-10 PubMedPubMedCentralCrossRefGoogle Scholar
  47. Jarvis B, Farr J (1971) Partial purification, specificity and mechanism of action of the nisin-inactivating enzyme from Bacillus cereus. Biochim Biophys Acta BBA - Enzymol 227:232–240. doi: 10.1016/0005-2744(71)90056-8 CrossRefGoogle Scholar
  48. Jevons MP (1961) “Celbenin”-resistant staphylococci. Br Med J 1:124–125PubMedCentralCrossRefGoogle Scholar
  49. Johnson AP, Uttley AH, Woodford N, George RC (1990) Resistance to vancomycin and teicoplanin: an emerging clinical problem. Clin Microbiol Rev 3:280–291. doi: 10.1128/CMR.3.3.280 PubMedPubMedCentralCrossRefGoogle Scholar
  50. Johnstone S, Gelmon K, Mayer L, Hancock R, Bally M (2000) In vitro characterization of the anticancer activity of membrane-active cationic peptides. I. Peptide-mediated cytotoxicity and peptide-enhanced cytotoxic activity of doxorubicin against wild-type and p-glycoprotein over-expressing tumor cell lines. Anticancer Drug Des 15:151–160PubMedGoogle Scholar
  51. Katayama Y, Murakami-Kuroda H, Cui L, Hiramatsu K (2009) Selection of heterogeneous vancomycin-intermediate Staphylococcus aureus by imipenem. Antimicrob Agents Chemother 53:3190–3196. doi: 10.1128/AAC.00834-08 PubMedPubMedCentralCrossRefGoogle Scholar
  52. Kim SJ, Cegelski L, Stueber D, Singh M, Dietrich E, Tanaka KSE, TR P Jr, Far AR, Schaefer J (2008) Oritavancin exhibits dual mode of action to inhibit cell-wall biosynthesis in Staphylococcus aureus. J Mol Biol 377:281–293. doi: 10.1016/j.jmb.2008.01.031 PubMedPubMedCentralCrossRefGoogle Scholar
  53. Koopmans T, Wood TM, ’t Hart P, Kleijn LHJ, Hendrickx APA, Willems RJL, Breukink E, Martin NI (2015) Semisynthetic lipopeptides derived from nisin display antibacterial activity and lipid II binding on par with that of the parent compound. J Am Chem Soc 137:9382–9389. doi: 10.1021/jacs.5b04501 PubMedCrossRefGoogle Scholar
  54. Kramer NE, van Hijum SA, Knol J, Kok J, Kuipers OP (2006) Transcriptome analysis reveals mechanisms by which Lactococcus lactis acquires nisin resistance. Antimicrob Agents Chemother 50:1753–1761. doi: 10.1128/AAC.50.5.1753-1761.2006 PubMedPubMedCentralCrossRefGoogle Scholar
  55. Leadbetter MR, Adams SM, Bazzini B, Fatheree PR, Karr DE, Krause KM, Lam BMT, Linsell MS, Nodwell MB, Pace JL, Quast K, Shaw JP, Soriano E, Trapp SG, Villena JD, TX W, Christensen BG, Judice JK (2004) Hydrophobic vancomycin derivatives with improved ADME properties: discovery of telavancin (TD-6424). J Antibiot (Tokyo) 571:326–336CrossRefGoogle Scholar
  56. Leuthner KD, Vidaillac C, Cheung CM, Rybak MJ (2010) In vitro activity of the new multivalent glycopeptide-cephalosporin antibiotic TD-1792 against vancomycin-nonsusceptible Staphylococcus isolates. Antimicrob Agents Chemother 54:3799–3803. doi: 10.1128/AAC.00452-10 PubMedPubMedCentralCrossRefGoogle Scholar
  57. Ling LL, Schneider T, Peoples AJ, Spoering AL, Engels I, Conlon BP, Mueller A, Schäberle TF, Hughes DE, Epstein S, Jones M, Lazarides L, Steadman VA, Cohen DR, Felix CR, Fetterman KA, Millett WP, Nitti AG, Zullo AM, Chen C, Lewis K (2015) A new antibiotic kills pathogens without detectable resistance. Nature 517:455–459. doi: 10.1038/nature14098 PubMedCrossRefGoogle Scholar
  58. Long DD, Aggen JB, Chinn J, Choi SK, Christensen BG, Fatheree PR, Green D, Hegde SS, Judice JK, Kaniga K, Krause KM, Leadbetter M, Linsell MS, Marquess DG, Moran EJ, Nodwell MB, Pace JL, Trapp SG, Turner SD (2008) Exploring the positional attachment of glycopeptide/beta-lactam heterodimers. J Antibiot (Tokyo) 61:603–614. doi: 10.1038/ja.2008.80 CrossRefGoogle Scholar
  59. Maemoto A, Qu X, Rosengren KJ, Tanabe H, Henschen-Edman A, Craik DJ, Ouellette AJ (2004) Functional analysis of the alpha-defensin disulfide array in mouse cryptdin-4. J Biol Chem 279:44188–44196. doi: 10.1074/jbc.M406154200 PubMedCrossRefGoogle Scholar
  60. Maisetta G, Di Luca M, Esin S, Florio W, Brancatisano FL, Bottai D, Campa M, Batoni G (2008) Evaluation of the inhibitory effects of human serum components on bactericidal activity of human beta defensin 3. Peptides 29:1–6. doi: 10.1016/j.peptides.2007.10.013 PubMedCrossRefGoogle Scholar
  61. Mantovani HC, Russell JB (2001) Nisin resistance of Streptococcus bovis. Appl Environ Microbiol 67:808–813. doi: 10.1128/AEM.67.2.808-813.2001 PubMedPubMedCentralCrossRefGoogle Scholar
  62. Mazzotta AS, Crandall AD, Montville TJ (1997) Nisin resistance in Clostridium botulinum spores and vegetative cells. Appl Environ Microbiol 63:2654–2659PubMedPubMedCentralGoogle Scholar
  63. Mazzotta AS, Montville TJ (1997) Nisin induces changes in membrane fatty acid composition of Listeria monocytogenes nisin-resistant strains at 10 °C and 30 °C. J Appl Microbiol 82:32–38. doi: 10.1111/j.1365-2672.1997.tb03294.x PubMedCrossRefGoogle Scholar
  64. McKay GA, Beaulieu S, Arhin FF, Belley A, Sarmiento I, Parr T, Moeck G (2009) Time–kill kinetics of oritavancin and comparator agents against Staphylococcus aureus, Enterococcus faecalis and Enterococcus faecium. J Antimicrob Chemother 63:1191–1199. doi: 10.1093/jac/dkp126 PubMedCrossRefGoogle Scholar
  65. Ming X, Daeschel MA (1993) Nisin resistance of foodborne bacteria and the specific resistance responses of Listeria monocytogenes Scott A. J Food Prot 56:944–948Google Scholar
  66. Mishra NN, Rubio A, Nast CC, Bayer AS (2012) Differential adaptations of methicillin-resistant Staphylococcus aureus to serial in vitro passage in daptomycin: evolution of daptomycin resistance and role of membrane carotenoid content and fluidity. Int J Microbiol 2012:e683450. doi: 10.1155/2012/683450, CrossRefGoogle Scholar
  67. Müller A, Ulm H, Reder-Christ K, Sahl HG, Schneider T (2012) Interaction of type A lantibiotics with undecaprenol-bound cell envelope precursors. Microb Drug Resist 18:261–270. doi: 10.1089/mdr.2011.0242 PubMedCrossRefGoogle Scholar
  68. Münch D, Engels I, Müller A, Reder-Christ K, Falkenstein-Paul H, Bierbaum G, Grein F, Bendas G, Sahl HG, Schneider T (2015) Structural variations of the cell wall precursor lipid II and their influence on binding and activity of the lipoglycopeptide antibiotic oritavancin. Antimicrob Agents Chemother 59:772–781. doi: 10.1128/AAC.02663-14 PubMedCrossRefGoogle Scholar
  69. Münch D, Müller A, Schneider T, Kohl B, Wenzel M, Bandow JE, Maffioli S, Sosio M, Donadio S, Wimmer R, Sahl HG (2014) The lantibiotic NAI-107 binds to bactoprenol-bound cell wall precursors and impairs membrane functions. J Biol Chem 289:12063–12076. doi: 10.1074/jbc.M113.537449 PubMedPubMedCentralCrossRefGoogle Scholar
  70. Münch D, Roemer T, Lee SH, Engeser M, Sahl HG, Schneider T (2012) Identification and in vitro analysis of the GatD/MurT enzyme-complex catalyzing lipid II amidation in Staphylococcus aureus. PLoS Pathog 8:e1002509. doi: 10.1371/journal.ppat.1002509 PubMedPubMedCentralCrossRefGoogle Scholar
  71. Mygind PH, Fischer RL, Schnorr KM, Hansen MT, Sönksen CP, Ludvigsen S, Raventós D, Buskov S, Christensen B, De Maria L, Taboureau O, Yaver D, Elvig-Jørgensen SG, Sørensen MV, Christensen BE, Kjærulff S, Frimodt-Moller N, Lehrer RI, Zasloff M, Kristensen HH (2005) Plectasin is a peptide antibiotic with therapeutic potential from a saprophytic fungus. Nature 437:975–980. doi: 10.1038/nature04051 PubMedCrossRefGoogle Scholar
  72. Oeemig JS, Lynggaard C, Knudsen DH, Hansen FT, Nørgaard KD, Schneider T, Vad BS, Sandvang DH, Nielsen LA, Neve S, Kristensen HH, Sahl HG, Otzen DE, Wimmer R (2012) Eurocin, a new fungal defensin structure, lipid binding, and its mode of action. J Biol Chem 287:42361–42372. doi: 10.1074/jbc.M112.382028 PubMedPubMedCentralCrossRefGoogle Scholar
  73. Oppedijk SF, Martin NI, Breukink E (2016) Hit ’em where it hurts: the growing and structurally diverse family of peptides that target lipid-II. Biochim Biophys Acta 1858:947–957. doi: 10.1016/j.bbamem.2015.10.024 PubMedCrossRefGoogle Scholar
  74. Pace JL, Krause K, Johnston D, Debabov D, Wu T, Farrington L, Lane C, Higgins DL, Christensen B, Judice JK, Kaniga K (2003) In vitro activity of TD-6424 against Staphylococcus aureus. Antimicrob Agents Chemother 47:3602–3604. doi: 10.1128/AAC.47.11.3602-3604.2003 PubMedPubMedCentralCrossRefGoogle Scholar
  75. Patti GJ, Kim SJ, TY Y, Dietrich E, Tanaka KSE, Parr TR Jr, Far AR, Schaefer J (2009) Vancomycin and oritavancin have different modes of action in Enterococcus faecium. J Mol Biol 392:1178–1191. doi: 10.1016/j.jmb.2009.06.064 PubMedPubMedCentralCrossRefGoogle Scholar
  76. Pendleton JN, Gorman SP, Gilmore BF (2013) Clinical relevance of the ESKAPE pathogens. Expert Rev Anti-Infect Ther 11:297–308. doi: 10.1586/eri.13.12 PubMedCrossRefGoogle Scholar
  77. Peschel A (2002) How do bacteria resist human antimicrobial peptides? Trends Microbiol 10:179–186. doi: 10.1016/S0966-842X(02)02333-8 PubMedCrossRefGoogle Scholar
  78. Peschel A, Otto M, Jack RW, Kalbacher H, Jung G, Götz F (1999) Inactivation of the dlt operon in Staphylococcus aureus confers sensitivity to defensins, protegrins, and other antimicrobial peptides. J Biol Chem 274:8405–8410. doi: 10.1074/jbc.274.13.8405 PubMedCrossRefGoogle Scholar
  79. Peschel A, Sahl HG (2006) The co-evolution of host cationic antimicrobial peptides and microbial resistance. Nat Rev Microbiol 4:529–536. doi: 10.1038/nrmicro1441 PubMedCrossRefGoogle Scholar
  80. Pokrovskaya V, Baasov T (2010) Dual-acting hybrid antibiotics: a promising strategy to combat bacterial resistance. Expert Opin Drug Discov 5:883–902. doi: 10.1517/17460441.2010.508069 PubMedCrossRefGoogle Scholar
  81. Rogers LA (1928) The inhibiting effect of Streptococcus lactis on Lactobacillus bulgaricus. J Bacteriol 16:321–325PubMedPubMedCentralGoogle Scholar
  82. Ruhr E, Sahl HG (1985) Mode of action of the peptide antibiotic nisin and influence on the membrane potential of whole cells and on cytoplasmic and artificial membrane vesicles. Antimicrob Agents Chemother 27:841–845PubMedPubMedCentralCrossRefGoogle Scholar
  83. Sahl HG, Kordel M, Benz R (1987) Voltage-dependent depolarization of bacterial membranes and artificial lipid bilayers by the peptide antibiotic nisin. Arch Microbiol 149:120–124PubMedCrossRefGoogle Scholar
  84. Sass V, Pag U, Tossi A, Bierbaum G, Sahl HG (2008) Mode of action of human beta-defensin 3 against Staphylococcus aureus and transcriptional analysis of responses to defensin challenge. Int J Med Microbiol 298:619–633. doi: 10.1016/j.ijmm.2008.01.011 PubMedCrossRefGoogle Scholar
  85. Sass V, Schneider T, Wilmes M, Körner C, Tossi A, Novikova N, Shamova O, Sahl HG (2010) Human β-defensin 3 inhibits cell wall biosynthesis in staphylococci. Infect Immun 78:2793–2800. doi: 10.1128/IAI.00688-09 PubMedPubMedCentralCrossRefGoogle Scholar
  86. Schmitt P, Wilmes M, Pugnière M, Aumelas A, Bachère E, Sahl HG, Schneider T, Destoumieux-Garzón D (2010) Insight into invertebrate defensin mechanism of action oyster defensins inhibit peptidoglycan biosynthesis by binding to lipid II. J Biol Chem 285:29208–29216. doi: 10.1074/jbc.M110.143388 PubMedPubMedCentralCrossRefGoogle Scholar
  87. Schneider JJ, Unholzer A, Schaller M, Schäfer-Korting M, Korting HC (2005) Human defensins. J Mol Med 83:587–595. doi: 10.1007/s00109-005-0657-1 PubMedCrossRefGoogle Scholar
  88. Schneider T, Kruse T, Wimmer R, Wiedemann I, Sass V, Pag U, Jansen A, Nielsen AK, Mygind PH, Raventós DS, Neve S, Ravn B, Bonvin AMJJ, Maria LD, Andersen AS, Gammelgaard LK, Sahl HG, Kristensen HH (2010) Plectasin, a fungal defensin, targets the bacterial cell wall precursor lipid II. Science 328:1168–1172. doi: 10.1126/science.1185723 PubMedCrossRefGoogle Scholar
  89. Schneider T, Sahl HG (2010a) An oldie but a goodie—cell wall biosynthesis as antibiotic target pathway. Int J Med Microbiol 300:161–169. doi: 10.1016/j.ijmm.2009.10.005 PubMedCrossRefGoogle Scholar
  90. Schneider T, Sahl HG (2010b) Lipid II and other bactoprenol-bound cell wall precursors as drug targets. Curr Opin Investig Drugs (Lond Engl 2000) 11:157–164Google Scholar
  91. Sheldrick GM, Jones PG, Kennard O, Williams DH, Smith GA (1978) Structure of vancomycin and its complex with acetyl-d-alanyl-d-alanine. Nature 271:223–225. doi: 10.1038/271223a0 PubMedCrossRefGoogle Scholar
  92. Silver LL (2011) Challenges of antibacterial discovery. Clin Microbiol Rev 24:71–109. doi: 10.1128/CMR.00030-10 PubMedPubMedCentralCrossRefGoogle Scholar
  93. Silver LL (2007) Multi-targeting by monotherapeutic antibacterials. Nat Rev Drug Discov 6:41–55. doi: 10.1038/nrd2202 PubMedCrossRefGoogle Scholar
  94. Smith L, Hasper H, Breukink E, Novak J, Čerkasov J, Hillman JD, Wilson-Stanford S, Orugunty RS (2008) Elucidation of the antimicrobial mechanism of mutacin 1140. Biochemistry (Mosc) 47:3308–3314. doi: 10.1021/bi701262z CrossRefGoogle Scholar
  95. Staroń A, Finkeisen DE, Mascher T (2011) Peptide antibiotic sensing and detoxification modules of Bacillus subtilis. Antimicrob Agents Chemother 55:515–525. doi: 10.1128/AAC.00352-10 PubMedCrossRefGoogle Scholar
  96. Stein T, Heinzmann S, Solovieva I, Entian KD (2003) Function of Lactococcus lactis nisin immunity genes nisI and nisFEG after coordinated expression in the surrogate host Bacillus subtilis. J Biol Chem 278:89–94. doi: 10.1074/jbc.M207237200 PubMedCrossRefGoogle Scholar
  97. Sun Z, Zhong J, Liang X, Liu J, Chen X, Huan L (2009) Novel mechanism for nisin resistance via proteolytic degradation of nisin by the nisin resistance protein NSR. Antimicrob Agents Chemother 53:1964–1973. doi: 10.1128/AAC.01382-08 PubMedPubMedCentralCrossRefGoogle Scholar
  98. Thomsen LE, Gottlieb CT, Gottschalk S, Wodskou TT, Kristensen HH, Gram L, Ingmer H (2010) The heme sensing response regulator HssR in Staphylococcus aureus but not the homologous RR23 in Listeria monocytogenes modulates susceptibility to the antimicrobial peptide plectasin. BMC Microbiol 10:307. doi: 10.1186/1471-2180-10-307 PubMedPubMedCentralCrossRefGoogle Scholar
  99. Tyrrell KL, Citron DM, Warren YA, Goldstein EJC (2012) In vitro activity of TD-1792, a multivalent glycopeptide-cephalosporin antibiotic, against 377 strains of anaerobic bacteria and 34 strains of Corynebacterium species. Antimicrob Agents Chemother 56:2194–2197. doi: 10.1128/AAC.06274-11 PubMedPubMedCentralCrossRefGoogle Scholar
  100. Ulm H, Wilmes M, Shai Y, Sahl HG (2012) Antimicrobial host defensins – specific antibiotic activities and innate defense modulation. Front Immunol 3:249. doi: 10.3389/fimmu.2012.00249 PubMedPubMedCentralCrossRefGoogle Scholar
  101. Varkey J, Nagaraj R (2005) Antibacterial activity of human neutrophil defensin HNP-1 analogs without cysteines. Antimicrob Agents Chemother 49:4561–4566. doi: 10.1128/AAC.49.11.4561-4566.2005 PubMedPubMedCentralCrossRefGoogle Scholar
  102. Varney KM, Bonvin AMJJ, Pazgier M, Malin J, Yu W, Ateh E, Oashi T, Lu W, Huang J, Diepeveen-de Buin M, Bryant J, Breukink E, MacKerell AD, de Leeuw EPH (2013) Turning defense into offense: defensin mimetics as novel antibiotics targeting lipid II. PLoS Pathog 9. doi: 10.1371/journal.ppat.1003732
  103. Wiedemann I, Breukink E, van Kraaij C, Kuipers OP, Bierbaum G, de Kruijff B, Sahl HG (2001) Specific binding of nisin to the peptidoglycan precursor lipid II combines pore formation and inhibition of cell wall biosynthesis for potent antibiotic activity. J Biol Chem 276:1772–1779. doi: 10.1074/jbc.M006770200 PubMedCrossRefGoogle Scholar
  104. Wu Z, Hoover DM, Yang D, Boulègue C, Santamaria F, Oppenheim JJ, Lubkowski J, Lu W (2003) Engineering disulfide bridges to dissect antimicrobial and chemotactic activities of human beta-defensin 3. Proc Natl Acad Sci 100:8880PubMedPubMedCentralCrossRefGoogle Scholar
  105. Xia G, Kohler T, Peschel A (2010) The wall teichoic acid and lipoteichoic acid polymers of Staphylococcus aureus. Int J Med Microbiol 300:148–154PubMedCrossRefGoogle Scholar
  106. Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415:389–395. doi: 10.1038/415389a PubMedCrossRefGoogle Scholar
  107. Zhang Y, Teng D, Mao R, Wang X, Xi D, Hu X, Wang J (2013) High expression of a plectasin-derived peptide NZ2114 in Pichia pastoris and its pharmacodynamics, postantibiotic and synergy against Staphylococcus aureus. Appl Microbiol Biotechnol 98:681–694. doi: 10.1007/s00253-013-4881-2 PubMedCrossRefGoogle Scholar
  108. Zhou H, Fang J, Tian Y, Lu XY (2013) Mechanisms of nisin resistance in Gram-positive bacteria. Ann Microbiol 64:413–420. doi: 10.1007/s13213-013-0679-9 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Pharmaceutical MicrobiologyUniversity of BonnBonnGermany
  2. 2.German Centre for Infection Research (DZIF), Partner Site Bonn-CologneBonnGermany

Personalised recommendations