Advertisement

Applied Microbiology and Biotechnology

, Volume 100, Issue 23, pp 9933–9941 | Cite as

Histone-dependent IgG conservation in octanoic acid precipitation and its mechanism

  • Quan Chen
  • Phyllicia Toh
  • Yue Sun
  • Sarah Maria Abdul Latiff
  • Aina Hoi
  • Mo Xian
  • Haibo Zhang
  • Rui NianEmail author
  • Wei ZhangEmail author
  • Pete Gagnon
Biotechnological products and process engineering

Abstract

Octanoic acid (OA) precipitation has long been used in protein purification. Recently, we reported a new cell culture clarification method for immunoglobulin G (IgG) purification, employing an advance elimination of chromatin heteroaggregates with a hybrid OA-solid phase system. This treatment reduced DNA more than 3 logs, histone below the detection limit (LOD), and non-histone host cell proteins (nh-HCP) by 90 % while conserving more than 90 % of the IgG monomer. In this study, we further investigated the conservation of IgG monomer and antibody light chain (LC) to the addition of OA/OA-solid phase complex, with or without histone and DNA in different combinations. The results showed that highly basic histone protein was the prime target in OA/OA-solid phase precipitation system for IgG purification, and the selective conservation of IgG monomer in this system was histone dependent. Our findings partially support the idea that OA works by sticking to electropositive hydrophobic domains on proteins, reducing their solubility, and causing them to agglomerate into large particles that precipitate from solution. Our findings also provide a new perspective for IgG purification and emphasize the necessity to re-examine the roles of various host contaminants in IgG purification.

Keywords

Octanoic acid Agglomeration Histone IgG Light chain 

Notes

Acknowledgments

This work was financially supported by QIBEBT (Qingdao Institute of Bioenergy and Bioprocess Technology) Start-up Fund (No. Y571061905) and also by the Biomedical Research Council of A*STAR and Exploit Technologies Pte Ltd., of Singapore (No. ETPL/12-R15GAP-0009).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Bhoskar P, Belongia B, Smith R, Yoon S, Carter T, Jin X (2013) Free light chain content in culture media reflects recombinant monoclonal antibody productivity and quality. Biotechnol Prog 29:1131–1139. doi: 10.1002/btpr.1767 CrossRefPubMedGoogle Scholar
  2. Birch JR, Racher AJ (2006) Antibody production. Adv Drug Deliv Rev 58:671–685. doi: 10.1016/j.addr.2005.12.006 CrossRefPubMedGoogle Scholar
  3. Brodsky Y, Zhang C, Yigzaw Y, Vedantham G (2012) Caprylic acid precipitation method for impurity reduction: an alternative to conventional chromatography for monoclonal antibody purification. Biotechnol Bioeng 109:2589–2598. doi: 10.1002/bit.24539 CrossRefPubMedGoogle Scholar
  4. Budavari S, O’Neil MJ, Smith A, Heckelman PE, Kinneary JF (1996) The Merck index: an encyclopedia of chemicals, drugs, and biologicals (12th ed.) Merck & Co. ISBN 0911910123Google Scholar
  5. Chusainow J, Yang YS, Yeo JH, Toh PC, Asvadi P, Wong NS, Yap MG (2009) A study of monoclonal antibody-producing CHO cell lines: what makes a stable high producer? Biotechnol Bioeng 102:1182–1196. doi: 10.1002/bit.22158 CrossRefPubMedGoogle Scholar
  6. Gagnon P, Nian R, Lee J, Tan L, Abdul Latiff SM, Lim CL, Chuah C, Yang YS, Gan HT (2014a) Nonspecific interactions of chromatin with immunoglobulin G and protein A, and their impact on purification performance. J Chromatogr A 1340:68–78. doi: 10.1016/j.chroma.2014.03.010 CrossRefPubMedGoogle Scholar
  7. Gagnon P, Nian R, Tan L, Cheong J, Yeo V, Yang YS, Gan HT (2014b) Chromatin-mediated depression of fractionation performance on electronegative multimodal chromatography media, its prevention, and ramifications for purification of immunoglobulin G. J Chromatogr A 1374:145–155. doi: 10.1016/j.chroma.2014.11.052 CrossRefPubMedGoogle Scholar
  8. Gagnon P, Nian R, Yang YS, Yang Q, Lim CL (2015) Non-immunospecific association of immunoglobulin G with chromatin during elution from protein a inflates host contamination, aggregate content, and antibody loss. J Chromatogr A 1408:151–160. doi: 10.1016/j.chroma.2015.07.017 CrossRefPubMedGoogle Scholar
  9. Gao QS, Sun M, Tyutyulkova S, Webster D, Rees A, Tramontano A, Massey RJ, Paul S (1994) Molecular cloning of a proteolytic antibody light chain. J Biol Chem 269:32389–32393PubMedGoogle Scholar
  10. Georgel PT, Hansen JC (2001) Linker histone function in chromatin: dual mechanisms of action. Biochem Cell Biol 79:313–316. doi: 10.1139/o01-080 CrossRefPubMedGoogle Scholar
  11. Haasa J, Fettinga F, Plogb C, Kerfinb W, Gerhardb W, Rothb G (2006) Recognition and classification of histones using support vector machine. J Comput Biol 13:102–112. doi: 10.1089/cmb.2006.13.102 CrossRefGoogle Scholar
  12. Hamilton RG (1990) 5—Production and epitope location of monoclonal antibodies to the human IgG subclasses. The Human IgG Subclasses 33:79–91. doi: 10.1016/B978-0-08-037504-5.50010-7 CrossRefGoogle Scholar
  13. Herzer S, Bhangale A, Barker G, Chowdhary I, Conover M, O’Mara BW, Tsang L, Wang SY, Krystek SR Jr, Yao Y, Rieble S (2015) Development and scale-up of the recovery and purification of a domain antibody fc fusion protein-comparison of a two and three-step approach. Biotechnol Bioeng 112:1417–1428. doi: 10.1002/bit.25561 CrossRefPubMedGoogle Scholar
  14. Ho SCL, Muriel B, Feng H, Mariati, Song Z, Yap MGS, Yang Y (2012) IRES-mediated tricistronic vectors for enhancing generation of high monoclonal antibody expressing CHO cell lines. J Biotechnol 157:130–139. doi: 10.1016/j.jbiotec.2011.09.023 CrossRefPubMedGoogle Scholar
  15. Hoch H, Chanutin A (1954) Albumin from heated human plasma. I. Preparation and electrophoretic properties. Arch Biochem Biophys 51:271–276CrossRefPubMedGoogle Scholar
  16. Lide DR (1990) CRC handbook of chemistry and physics (70th Ed.). CRC Press, Boca Raton (FL)Google Scholar
  17. Morais V, Massaldi H (2012) A model mechanism for protein precipitation by caprylic acid: application to plasma purification. Biotechnol Appl Biochem 59:50–54. doi: 10.1002/bab.68 CrossRefPubMedGoogle Scholar
  18. Nian R, Chuah C, Lee J, Gan HT, Latiff SM, Lee WY, Vagenende V, Yang YS, Gagnon P (2013) Void exclusion of antibodies by grafted-ligand porous particle anion exchangers. J Chromatogr A 1282:127–132. doi: 10.1016/j.chroma.2013.01.065 CrossRefPubMedGoogle Scholar
  19. Nian R, Zhang W, Tan L, Lee J, Bi X, Yang Y, Gan HT, Gagnon P (2015) Advance chromatin extraction improves capture performance of protein a affinity chromatography. J Chromatogr A 1431:1–7. doi: 10.1016/j.chroma.2015.12.044 CrossRefPubMedGoogle Scholar
  20. Open drug and drug target database. (2005) http://www.drugbank.ca/drugs/DB00072
  21. Russo C, Callegaro L, Lanza E, Ferrone S (1983) Purification of IgG monoclonal antibody by caprylic acid precipitation. J Immunol Methods 65:269–271. doi: 10.1016/0022-1759(83)90324-1 CrossRefPubMedGoogle Scholar
  22. Schlatter S, Stansfield SH, Dinnis DM, Racher AJ, Birch JR, James DC (2005) On the optimal ratio of heavy to light chain genes for efficient recombinant antibody production by CHO cells. Biotechnol Prog 21:122–133. doi: 10.1021/bp049780w CrossRefPubMedGoogle Scholar
  23. Singh N, Arunkumar A, Chollangi S, Tan Z, Borys M, Zheng JL (2016) Clarification technologies for monoclonal antibody manufacturing processes: current state and future perspectives. Biotechnol Bioeng 113:698–716. doi: 10.1002/bit.25810 CrossRefPubMedGoogle Scholar
  24. Sneekes EJ, Han J, Elliot M, Ausio J, Swart R, Heck AJR, Borchers C (2009) Accurate molecular weight analysis of histones using FFE and RP-HPLC on monolithic capillary columns. J Sep Sci 32:2691–2698. doi: 10.1002/jssc.200800627 CrossRefPubMedGoogle Scholar
  25. Steinbuch M, Audran R (1969) The isolation of IgG from mammalian sera with the aid of caprylic acid. Arch Biochem Biophys 134:279–284. doi: 10.1016/0003-9861(69)90285-9 CrossRefPubMedGoogle Scholar
  26. Temponi M, Kageshita T, Perosa F, Ono R, Okada H, Ferrone S (1989) Purification of murine IgG monoclonal antibodies by precipitation with caprylic acid: comparison with other methods of purification. Hybridoma 8:85–95. doi: 10.1089/hyb.1989.8.85 CrossRefPubMedGoogle Scholar
  27. Zheng J, Wang L, Twarowska B, Laino S, Sparks C, Smith T, Russell R, Wang M (2015) Caprylic acid-induced impurity precipitation from protein a capture column elution pool to enable a two chromatography step process for monoclonal antibody purification. Biotechnol Prog 259:1515–1525. doi: 10.1002/btpr.2154 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
  2. 2.Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR)SingaporeSingapore

Personalised recommendations