Applied Microbiology and Biotechnology

, Volume 100, Issue 17, pp 7377–7385 | Cite as

Leishmania-based expression systems

  • Tahereh Taheri
  • Negar Seyed
  • Amir Mizbani
  • Sima Rafati


Production of therapeutic or medical recombinant proteins, such as monoclonal antibodies, proteins, or active enzymes, requires a highly efficient system allowing natural folding and perfect post-translation modifications of the expressed protein. These requirements lead to the generation of a variety of gene expression systems from bacteria to eukaryotes. To achieve the best form of eukaryotic proteins, two factors need to be taken into consideration: choosing a suitable organism to express the protein of interest, and selecting an efficient delivery system. For this reason, the expression of recombinant proteins in eukaryotic nonpathogenic Leishmania parasites is an interesting approach which meets both criteria. Here, new Leishmania-based expression systems are compared with current systems that have long histories in research and industry.


Leishmania Expression protein systems Nonpathogenic parasites 


Compliance with ethical standards


This work was financially supported by a grant from the Pasteur Institute of Iran (Grant number # 792) to Tahereh Taheri.

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. Airenne KJ, Hu Y-C, Kost TA, Smith RH, Kotin RM, Ono C, Matsuura Y, Wang S, Ylä-Herttuala S (2013) Baculovirus: an insect-derived vector for diverse gene transfer applications. Mol Ther 21(4):739–749CrossRefPubMedPubMedCentralGoogle Scholar
  2. Azizi H, Hassani K, Taslimi Y, Najafabadi HS, Papadopoulou B, Rafati S (2009) Searching for virulence factors in the non-pathogenic parasite to humans Leishmania tarentolae. Parasitology 136(7):723–735CrossRefPubMedGoogle Scholar
  3. Basile G, Peticca M (2009) Recombinant protein expression in Leishmania tarentolae. Mol Biotechnol 43(3):273–278. doi: 10.1007/s12033-009-9213-5 CrossRefPubMedGoogle Scholar
  4. Ben-Abdallah M, Bondet V, Fauchereau F, Beguin P, Goubran-Botros H, Pagan C, Bourgeron T, Bellalou J (2011) Production of soluble, active acetyl serotonin methyl transferase in Leishmania tarentolae. Protein Expr Purif 75(1):114–118. doi: 10.1016/j.pep.2010.07.011 CrossRefPubMedGoogle Scholar
  5. Beverley SM (2003) Protozomics: trypanosomatid parasite genetics comes of age. Nat Rev Genet 4(1):11–19. doi: 10.1038/nrg980 nrg980 CrossRefPubMedGoogle Scholar
  6. Bolhassani A, Shirbaghaee Z, Agi E, Davoudi N (2015) VLP production in Leishmania tarentolae: a novel expression system for purification and assembly of HPV16 L1. Protein Expr Purif 116:7–11CrossRefPubMedGoogle Scholar
  7. Boucher N, McNicoll F, Dumas C, Papadopoulou B (2002) RNA polymerase I-mediated transcription of a reporter gene integrated into different loci of Leishmania. Mol Biochem Parasitol 119(1):153–158CrossRefPubMedGoogle Scholar
  8. Breton M, Tremblay MJ, Ouellette M, Papadopoulou B (2005) Live nonpathogenic parasitic vector as a candidate vaccine against visceral leishmaniasis. Infect Immun 73(10):6372–6382CrossRefPubMedPubMedCentralGoogle Scholar
  9. Clayton C, Shapira M (2007) Post-transcriptional regulation of gene expression in trypanosomes and leishmanias. Mol Biochem Parasitol 156(2):93–101Google Scholar
  10. Clayton CE (1999) Genetic manipulation of kinetoplastida. Parasitol Today 15(9):372–378CrossRefPubMedGoogle Scholar
  11. Clayton CE (2002) Life without transcriptional control? From fly to man and back again. EMBO J 21(8):1881–1888CrossRefPubMedPubMedCentralGoogle Scholar
  12. Davoudi N, Hemmati A, Khodayari Z, Adeli A, Hemayatkar M (2011) Cloning and expression of human IFN-γ in Leishmania tarentolae. World J Microbiol Biotechnol 27(8):1893–1899CrossRefGoogle Scholar
  13. Demain AL, Vaishnav P (2009) Production of recombinant proteins by microbes and higher organisms. Biotechnol Adv 27(3):297–306CrossRefPubMedGoogle Scholar
  14. Dutta S, Ray D, Kolli BK, Chang K-P (2005) Photodynamic sensitization of Leishmania amazonensis in both extracellular and intracellular stages with aluminum phthalocyanine chloride for photolysis in vitro. Antimicrob Agents Chemother 49(11):4474–4484CrossRefPubMedPubMedCentralGoogle Scholar
  15. Fernandez-Robledo JA, Vasta GR (2010) Production of recombinant proteins from protozoan parasites. Trends Parasitol 26(5):244–254CrossRefPubMedPubMedCentralGoogle Scholar
  16. Fernandez JM, Hoeffler JP (1998) Gene expression systems: using nature for the art of expression. Academic Press, San DiegoGoogle Scholar
  17. Fischer K, dos Reis VP, Finke S, Sauerhering L, Stroh E, Karger A, Maisner A, Groschup MH, Diederich S, Balkema-Buschmann A (2016) Expression, characterisation and antigenicity of a truncated Hendra virus attachment protein expressed in the protozoan host Leishmania tarentolae. J Virol Methods 228:48–54CrossRefPubMedGoogle Scholar
  18. Gazdag EM, Cirstea IC, Breitling R, Lukes J, Blankenfeldt W, Alexandrov K (2010) Purification and crystallization of human Cu/Zn superoxide dismutase recombinantly produced in the protozoan Leishmania tarentolae. Acta Crystallogr Sect F: Struct Biol Cryst Commun 66(Pt 8):871–877, doi:S1744309110019330CrossRefGoogle Scholar
  19. Gongora R, Acestor N, Quadroni M, Fasel N, Saravia NG, Walker J (2003) Mapping the proteome of Leishmania Viannia parasites using two-dimensional polyacrylamide gel electrophoresis and associated technologies. Biomedica 23(2):153–160CrossRefPubMedGoogle Scholar
  20. Guo S, Skala W, Magdolen V, Briza P, Biniossek ML, Schilling O, Kellermann J, Brandstetter H, Goettig P (2016) A Single glycan at the 99-loop of human kallikrein-related peptidase 2 regulates activation and enzymatic activity. J Biol Chem 291(2):593–604CrossRefPubMedGoogle Scholar
  21. Healthcare G, Healthcare FG (2007) Purifying challenging proteins principles and methodsGoogle Scholar
  22. Hemayatkar M, Mahboudi F, Majidzadeh AK, Davami F, Vaziri B, Barkhordari F, Adeli A, Mahdian R, Davoudi N (2010) Increased expression of recombinant human tissue plasminogen activator in Leishmania tarentolae. Biotechnol J 5(11):1198–1206. doi: 10.1002/biot.201000233 CrossRefPubMedGoogle Scholar
  23. Hightower RC, Ruiz-Perez L, Wong ML, Santi D (1988) Extrachromosomal elements in the lower eukaryote Leishmania. J Biol Chem 263(32):16970–16976PubMedGoogle Scholar
  24. Hosseinzadeh S, Bolhassani A, Rafati S, Taheri T, Zahedifard F, Daemi A, Taslimi Y, Hashemi M, Memarnejadian A (2013) A non-pathogenic live vector as an efficient delivery system in vaccine design for the prevention of HPV16 E7-overexpressing cancers. Drug Deliv 20:190–198CrossRefPubMedGoogle Scholar
  25. Jarvis DL (2009) Baculovirus–insect cell expression systems. Methods Enzymol 463:191–222CrossRefPubMedGoogle Scholar
  26. Jorgensen ML, Friis NA, Just J, Madsen P, Petersen SV, Kristensen P (2014) Expression of single-chain variable fragments fused with the Fc-region of rabbit IgG in Leishmania tarentolae. Microb Cell Fact 13(9)Google Scholar
  27. Katebi A, Gholami E, Taheri T, Zahedifard F, Habibzadeh S, Taslimi Y, Shokri F, Papadopoulou B, Kamhawi S, Valenzuela J (2015) Leishmania tarentolae secreting the sand fly salivary antigen PpSP15 confers protection against Leishmania major infection in a susceptible BALB/c mice model. Mol Immunol 67(2):501–511Google Scholar
  28. Kazemi B, Heidari MH, Naderi M, Piryaei A, Pouya M-RN (2008) Study on ultrastructure of Leishmania major and lizard Leishmania. J Cell Anim Biol 2:129–133Google Scholar
  29. Khan KH (2013) Gene expression in mammalian cells and its applications. Adv Pharm Bull 3(2):257PubMedPubMedCentralGoogle Scholar
  30. King L (2012) The baculovirus expression system: a laboratory guide. Springer Science & Business MediaGoogle Scholar
  31. Klatt S, Konthur Z (2012) Secretory signal peptide modification for optimized antibody-fragment expression-secretion in Leishmania tarentolae. Microb Cell Factories 11(97):10.1186Google Scholar
  32. LeBowitz JH, Coburn CM, McMahon-Pratt D, Beverley SM (1990) Development of a stable Leishmania expression vector and application to the study of parasite surface antigen genes. Proc Natl Acad Sci U S A 87(24):9736–9740CrossRefPubMedPubMedCentralGoogle Scholar
  33. Liu X, Chang K (1992) The 63-kilobase circular amplicon of tunicamycin-resistant Leishmania amazonensis contains a functional N-acetylglucosamine-1-phosphate transferase gene that can be used as a dominant selectable marker in transfection. Mol Cell Biol 12(9):4112–4122CrossRefPubMedPubMedCentralGoogle Scholar
  34. Magistrelli G, Elson G, Fischer N, Malinge P (2012) Episomal vectors for rapid expression and purification of proteins in mammalian cells. INTECH Open Access PublisherGoogle Scholar
  35. Mehta SR, Huang R, Yang M, Zhang XQ, Kolli B, Chang KP, Hoffman RM, Goto Y, Badaro R, Schooley RT (2008) Real-time in vivo green fluorescent protein imaging of a murine leishmaniasis model as a new tool for Leishmania vaccine and drug discovery. Clin Vaccine Immunol 15(12):1764–1770. doi: 10.1128/CVI.00270-08 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Misslitz A, Mottram JC, Overath P, Aebischer T (2000) Targeted integration into a rRNA locus results in uniform and high level expression of transgenes in Leishmania amastigotes. Mol Biochem Parasitol 107(2):251–261CrossRefPubMedGoogle Scholar
  37. Mizbani A, Taheri T, Zahedifard F, Taslimi Y, Azizi H, Azadmanesh K, Papadopoulou B, Rafati S (2009) Recombinant Leishmania tarentolae expressing the A2 virulence gene as a novel candidate vaccine against visceral leishmaniasis. Vaccine 28(1):53–62Google Scholar
  38. Mizbani A, Taslimi Y, Zahedifard F, Taheri T, Rafati S (2011) Effect of A2 gene on infectivity of the nonpathogenic parasite Leishmania tarentolae. Parasitol Res 109(3):793–799. doi: 10.1007/s00436-011-2325-4 CrossRefPubMedGoogle Scholar
  39. Mirzaahmadi S, Asaadi-Tehrani G, Bandehpour M, Davoudi N, Tahmasbi L, Hosseinzadeh N, Mirzahoseini H, Parivar K, Kazemi B (2011) Expression of recombinant human coagulation factor VII by the Lizard Leishmania expression system. J Biomed Biotechnol 2011:873874. doi: 10.1155/2011/873874 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Mlynarcik P, Pulzova L, Bencurova E, Kovac A, Dominguez MA, Hresko S, Bhide MR (2015) Deciphering the interface between a CD40 receptor and borrelial ligand OspA. Microbiol Res 170:51–60CrossRefPubMedGoogle Scholar
  41. Myler PJ, Fasel N (2008) Leishmania: after the genome. Horizon Scientific PressGoogle Scholar
  42. Myler PJ, Audleman L, deVos T, Hixson G, Kiser P, Lemley C, Magness C, Rickel E, Sisk E, Sunkin S, Swartzell S, Westlake T, Bastien P, Fu G, Ivens A, Stuart K (1999) Leishmania major Friedlin chromosome 1 has an unusual distribution of protein-coding genes. Proc Natl Acad Sci U S A 96(6):2902–2906CrossRefPubMedPubMedCentralGoogle Scholar
  43. Niimi T (2012) Recombinant protein production in the eukaryotic protozoan parasite Leishmania tarentolae: a review. Methods Mol Biol 824:307–315. doi: 10.1007/978-1-61779-433-9_15
  44. Novo SP, Leles D, Bianucci R, Araujo A (2015) Leishmania tarentolae molecular signatures in a 300 hundred-years-old human Brazilian mummy. Parasites Vectors 8(1):72CrossRefPubMedPubMedCentralGoogle Scholar
  45. Orlando TC, Mayer MG, Campbell DA, Sturm NR, Floeter-Winter LM (2007) RNA polymerase I promoter and splice acceptor site recognition affect gene expression in non-pathogenic Leishmania species. Mem Inst Oswaldo Cruz 102(7):891–894CrossRefPubMedGoogle Scholar
  46. Palomares LA, Estrada-Moncada S, Ramírez OT (2004) Production of recombinant proteins recombinant gene expression. Springer, pp 15–51Google Scholar
  47. Phan HP, Sugino M, Niimi T (2009) The production of recombinant human laminin-332 in a Leishmania tarentolae expression system. Protein Expr Purif 68(1):79–84. doi: 10.1016/j.pep.2009.07.005 CrossRefPubMedGoogle Scholar
  48. Pirdel L, Hosseini AZ, Kazemi B, Rasouli M, Bandehpour M, Soudi S (2012) Cloning and expression of Leishmania infantum LPG3 gene by the lizard Leishmania expression system. Avicenna J Med Biotechnol 4(4):186PubMedPubMedCentralGoogle Scholar
  49. Pion C, Courtois V, Husson S, Bernard M-C, Nicolai M-C, Talaga P, Trannoy E, Moste C, Sodoyer R, Legastelois I (2014) Characterization and immunogenicity in mice of recombinant influenza haemagglutinins produced in Leishmania tarentolae. Vaccine 32(43):5570–5576CrossRefPubMedGoogle Scholar
  50. Previato JO, Jones C, Wait R, Routier F, Saraiva E, Mendonca-Previato L (1997) Leishmania adleri, a lizard parasite, expresses structurally similar glycoinositolphospholipids to mammalian Leishmania. Glycobiology 7(5):687–695CrossRefPubMedGoogle Scholar
  51. Raymond F, Boisvert S, Roy G, Ritt JF, Legare D, Isnard A, Stanke M, Olivier M, Tremblay MJ, Papadopoulou B, Ouellette M, Corbeil J (2011) Genome sequencing of the lizard parasite Leishmania tarentolae reveals loss of genes associated to the intracellular stage of human pathogenic species. Nucleic Acids Res. doi: 10.1093/nar/gkr834 PubMedPubMedCentralGoogle Scholar
  52. Real F, Vidal RO, Carazzolle MF, Mondego JMC, Costa GGL, Herai RH, Würtele M, de Carvalho LM, e Ferreira RC, Mortara RA (2013) The genome sequence of Leishmania (Leishmania) amazonensis: functional annotation and extended analysis of gene models. DNA Res 20(6):567–581CrossRefPubMedPubMedCentralGoogle Scholar
  53. Robinson KA, Beverley SM (2003) Improvements in transfection efficiency and tests of RNA interference (RNAi) approaches in the protozoan parasite Leishmania. Mol Biochem Parasitol 128(2):217–228CrossRefPubMedGoogle Scholar
  54. Rosano GL, Ceccarelli EA (2014) Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol 5:1–17Google Scholar
  55. Roy G, Dumas C, Sereno D, Wu Y, Singh AK, Tremblay MJ, Ouellette M, Olivier M, Papadopoulou B (2000) Episomal and stable expression of the luciferase reporter gene for quantifying Leishmania spp. infections in macrophages and in animal models. Mol Biochem Parasitol 110(2):195–206CrossRefPubMedGoogle Scholar
  56. Salehi M, Taheri T, Mohit E, Zahedifard F, Seyed N, Taslimi Y, Sattari M, Bolhassani A, Rafati S (2012) Recombinant Leishmania tarentolae encoding the HPV type 16 E7 gene in tumor mice model. Immunotherapy 4(11):1107–1120. doi: 10.2217/imt.12.110 CrossRefPubMedGoogle Scholar
  57. Saljoughian N, Taheri T, Zahedifard F, Taslimi Y, Doustdari F, Bolhassani A, Doroud D, Azizi H, Heidari K, Vasei M, Namvar Asl N, Papadopoulou B, Rafati S (2013) Development of novel prime-boost strategies based on a tri-gene fusion recombinant L. tarentolae vaccine against experimental murine visceral leishmaniasis. PLoS Negl Trop Dis 7(4):e2174. doi: 10.1371/journal.pntd.0002174 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Shahbazi M, Zahedifard F, Taheri T, Taslimi Y, Jamshidi S, Shirian S, Mahdavi N, Hassankhani M, Daneshbod Y, Zarkesh-Esfahani SH (2015) Evaluation of live recombinant nonpathogenic Leishmania tarentolae expressing cysteine proteinase and A2 genes as a candidate vaccine against experimental canine visceral leishmaniasis. PLoS One 10(7):e0132794CrossRefPubMedPubMedCentralGoogle Scholar
  59. Simpson L, Holzjr G (1988) The status of Leishmania tarentolae/Trypanosoma platydactyli. Parasitol Today 4(4):115–118Google Scholar
  60. Sodoyer R (2004) Expression systems for the production of recombinant pharmaceuticals. BioDrugs 18(1):51–62CrossRefPubMedGoogle Scholar
  61. Soleimani M, Davudi N, Fallahian F, Mahboudi F (2006) Cloning of tissue plasminogen activator cDNA in nonpathogenic Leishmania. Yakhteh Med J 8(3):196–203Google Scholar
  62. Sugino M, Niimi T (2012) Expression of multisubunit proteins in Leishmania tarentolae. Recombinant Gene Expression 317–325Google Scholar
  63. Taheri T, Rafati S (2013) Leishmaniasis: recombinant DNA vaccination and different approaches for vaccine development. J Clin Invest 3(11):1023–1044CrossRefGoogle Scholar
  64. Taheri T, Gholami E, Saatchi F, Seyed N, Taslimi Y, Rafati S (2014) Expressional comparison between episomal and stable transfection of a selected tri-fusion protein in Leishmania tarentolae. Vaccine Res 1:1–9Google Scholar
  65. Taheri T, Saberi Nik H, Seyed N, Doustdari F, Etemadzadeh M-H, Torkashvand F, Rafati S (2015) Generation of stable L. major +EGFP-LUC and simultaneous comparison between EGFP and luciferase sensitivity. Exp Parasitol 150:44–55CrossRefPubMedGoogle Scholar
  66. Taromchi AH, Kazemi B, Mahmazi S, Bandehpour M (2013) Heterologous expression of human IL-29 (IFN-λ1) in Iranian lizard Leishmania. Iran J Biotechnol 11(3):168–174CrossRefGoogle Scholar
  67. Taslimi Y, Zahedifard F, Habibzadeh S, Taheri T, Abbaspour H, Sadeghipour A, Mohit E, Rafati S (2016) Antitumor effect of IP-10 by using two different approaches: live delivery system and gene therapy. J Breast Cancer 19(1):34–44. doi: 10.4048/jbc.2016.19.1.34 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Terpe K (2006) Overview of bacterial expression systems for heterologous protein production: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol 72:211–222CrossRefPubMedGoogle Scholar
  69. Thewes S (2014) Calcineurin-Crz1 signaling in lower eukaryotes. Eukaryot Cell 13(6):694–705CrossRefPubMedPubMedCentralGoogle Scholar
  70. Titus RG, Gueiros-Filho FJ, de Freitas LA, Beverley SM (1995) Development of a safe live Leishmania vaccine line by gene replacement. Proc Natl Acad Sci U S A 92(22):10267–10271CrossRefPubMedPubMedCentralGoogle Scholar
  71. Valdivia HO, Scholte LL, Oliveira G, Gabaldón T, Bartholomeu DC (2015) The Leishmania metaphylome: a comprehensive survey of Leishmania protein phylogenetic relationships. BMC Genomics 16(1):887CrossRefPubMedPubMedCentralGoogle Scholar
  72. Yadegari Z, Bandehpour M, Kazemi B, Sharifi-Sarasiabi K (2015) Expression of recombinant human amelogenin in Iranian Lizard Leishmania and its biological function assay. Iran J Public Health 44(7):987PubMedPubMedCentralGoogle Scholar
  73. Zahedifard F, Gholami E, Taheri T, Taslimi Y, Doustdari F, Seyed N, Torkashvand F, Meneses C, Papadopoulou B, Kamhawi S (2014) Enhanced protective efficacy of nonpathogenic recombinant Leishmania tarentolae expressing Cysteine Proteinases combined with a sand fly salivary antigen. PLoS Negl Trop Dis 8(3):e2751CrossRefPubMedPubMedCentralGoogle Scholar
  74. Zandieh M, Kashi T, Taheri T, Zahedifard F, Taslimi Y (2015) Assessment of protection induced by DNA and live vaccine encoding Leishmania MHC class I restricted epitopes against L. major challenge in balb/c mice model. J Microb Biochem Technol 7:427–438CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Tahereh Taheri
    • 1
  • Negar Seyed
    • 1
  • Amir Mizbani
    • 2
  • Sima Rafati
    • 1
  1. 1.Department of Immunotherapy and Leishmania Vaccine ResearchPasteur Institute of IranTehranIran
  2. 2.Division of Endocrinology, Diabetes, and Clinical NutritionUniversity Hospital ZurichZurichSwitzerland

Personalised recommendations