Applied Microbiology and Biotechnology

, Volume 100, Issue 20, pp 8901–8912 | Cite as

Understanding the physiological roles of polyhydroxybutyrate (PHB) in Rhodospirillum rubrum S1 under aerobic chemoheterotrophic conditions

  • Tanja Narancic
  • Elisa Scollica
  • Shane T. Kenny
  • Helena Gibbons
  • Eibhlin Carr
  • Lorraine Brennan
  • Gerard Cagney
  • Kieran Wynne
  • Cormac Murphy
  • Matthias Raberg
  • Daniel Heinrich
  • Alexander Steinbüchel
  • Kevin E. O’Connor
Applied microbial and cell physiology

Abstract

Polyhydroxybutyrate (PHB) is an important biopolymer accumulated by bacteria and associated with cell survival and stress response. Here, we make two surprising findings in the PHB-accumulating species Rhodospirillum rubrum S1. We first show that the presence of PHB promotes the increased assimilation of acetate preferentially into biomass rather than PHB. When R. rubrum is supplied with 13C-acetate as a PHB precursor, 83.5 % of the carbon in PHB comes from acetate. However, only 15 % of the acetate ends up in PHB with the remainder assimilated as bacterial biomass. The PHB-negative mutant of R. rubrum assimilates 2-fold less acetate into biomass compared to the wild-type strain. Acetate assimilation proceeds via the ethylmalonyl-CoA pathway with (R)-3-hydroxybutyrate as a common intermediate with the PHB pathway. Secondly, we show that R. rubrum cells accumulating PHB have reduced ribulose 1,5-bisphosphate carboxylase (RuBisCO) activity. RuBisCO activity reduces 5-fold over a 36-h period after the onset of PHB. In contrast, a PHB-negative mutant maintains the same level of RuBisCO activity over the growth period. Since RuBisCO controls the redox potential in R. rubrum, PHB likely replaces RuBisCO in this role. R. rubrum is the first bacterium found to express RuBisCO under aerobic chemoheterotrophic conditions.

Keywords

Rhodospirillum rubrum S1 Aerobic growth Polyhydroxybutyrate (PHB) Ribulose 1,5-bisphosphate carboxylase (RuBisCO) Crotonyl-CoA carboxylase/reductase Ethylmalonyl-CoA pathway 

Supplementary material

253_2016_7711_MOESM1_ESM.pdf (1.3 mb)
ESM 1(PDF 1285 kb)

References

  1. Alber BE, Spanheimer R, Ebenau-Jehle C, Fuchs G (2006) Study of an alternate glyoxylate cycle for acetate assimilation by Rhodobacter sphaeroides. Mol Microbiol 61(2):297–309. doi:10.1111/J.1365-2958.2006.05238.X PubMedCrossRefGoogle Scholar
  2. Arias S, Bassas-Galia M, Molinari G, Timmis KN (2013) Tight coupling of polymerization and depolymerization of polyhydroxyalkanoates ensures efficient management of carbon resources in Pseudomonas putida. Microb Biotechnol 6(5):551–563. doi:10.1111/1751-7915.12040 PubMedPubMedCentralCrossRefGoogle Scholar
  3. Basak N, Das D (2007) The prospect of purple non-sulfur (PNS) photosynthetic bacteria for hydrogen production: the present state of the art. World J Microbiol Biotechnol 23(1):31–42. doi:10.1007/s11274-006-9190-9 CrossRefGoogle Scholar
  4. Bentley R (2000) From ‘reactive C-2 units’ to acetyl coenzyme A: a long trail with an acetyl phosphate detour. Trends Biochem Sci 25(6):302–305. doi:10.1016/S0968-0004(00)01590-5 PubMedCrossRefGoogle Scholar
  5. Berg JM, Tymoczko JL, Stryer L (2002) Biochemistry, Fifth edn. W. H. Freeman and Company, New YorkGoogle Scholar
  6. Bose SK, Gest H, Ormerod JG (1961) Light-activated hydrogenase activity in a photosynthetic bacterium—a permeability phenomenon. J Biol Chem 236(3):PC13–PC14Google Scholar
  7. Brandl H, Knee EJ, Fuller RC, Gross RA, Lenz RW (1989) Ability of the phototrophic bacterium Rhodospirillum rubrum to produce various poly (beta-hydroxyalkanoates)—potential sources for biodegradable polyesters. Int J Biol Macromol 11(1):49–55. doi:10.1016/0141-8130(89)90040-8 PubMedCrossRefGoogle Scholar
  8. Cagney G, Park S, Chung C, Tong B, O’Dushlaine C, Shields DC, Emili A (2005) Human tissue profiling with multidimensional protein identification technology. J Proteome Res 4(5):1757–1767. doi:10.1021/Pr0500354 PubMedCrossRefGoogle Scholar
  9. Carius AB, Henkel M, Grammel H (2011) A glutathione redox effect on photosynthetic membrane expression in Rhodospirillum rubrum. J Bacteriol 193(8):1893–1900. doi:10.1128/JB.01353-10 PubMedPubMedCentralCrossRefGoogle Scholar
  10. Carius L, Carius AB, McIntosh M, Grammel H (2013) Quorum sensing influences growth and photosynthetic membrane production in high-cell-density cultivations of Rhodospirillum rubrum. BMC Microbiol 13. doi:10.1186/1471-2180-13-189
  11. Cook LS, Im H, Tabita FR (1988) Oxygen-dependent inactivation of ribulose 1,5-bisphosphate carboxylase oxygenase in crude extracts of Rhodospirillum rubrum and establishment of a model inactivation system with purified enzyme. J Bacteriol 170(12):5473–5478PubMedPubMedCentralGoogle Scholar
  12. Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26(12):1367–1372. doi:10.1038/nbt.1511 PubMedCrossRefGoogle Scholar
  13. Cox J, Neuhauser N, Michalski A, Scheltema RA, Olsen JV, Mann M (2011) Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res 10(4):1794–1805. doi:10.1021/Pr101065j PubMedCrossRefGoogle Scholar
  14. Do YS, Smeenk J, Broer KM, Kisting CJ, Brown R, Heindel TJ, Bobik TA, DiSpirito AA (2007) Growth of Rhodospirillum rubrum on synthesis gas: conversion of CO to H2 and poly-beta-hydroxyalkanoate. Biotechnol Bioeng 97(2):279–286. doi:10.1002/bit.21226 PubMedCrossRefGoogle Scholar
  15. Eggers J, Steinbüchel A (2014) Impact of Ralstonia eutropha’s poly(3-hydroxybutyrate) (PHB) depolymerases and phasins on PHB storage in recombinant Escherichia coli. Appl Environ Microbiol 80(24):7702–7709. doi:10.1128/Aem.02666-14 PubMedPubMedCentralCrossRefGoogle Scholar
  16. Eisenberg MA (1953) The tricarboxylic acid in Rhodospirillum rubrum. J Biol Chem 203(2):815–836PubMedGoogle Scholar
  17. Erb TJ, Berg IA, Brecht V, Müller M, Fuchs G, Alber BE (2007) Synthesis of C5-dicarboxylic acids from C2-units involving crotonyl-CoA carboxylase/reductase: the ethylmalonyl-CoA pathway. Proc Natl Acad Sci U S A 104(25):10631–10636. doi:10.1073/pnas.0702791104 PubMedPubMedCentralCrossRefGoogle Scholar
  18. Erb TJ, Brecht V, Fuchs G, Müller M, Alber BE (2009a) Carboxylation mechanism and stereochemistry of crotonyl-CoA carboxylase/reductase, a carboxylating enoyl-thioester reductase. Proc Natl Acad Sci U S A 106(22):8871–8876. doi:10.1073/pnas.0903939106 PubMedPubMedCentralCrossRefGoogle Scholar
  19. Erb TJ, Fuchs G, Alber BE (2009b) (2S)-Methylsuccinyl-CoA dehydrogenase closes the ethylmalonyl-CoA pathway for acetyl-CoA assimilation. Mol Microbiol 73(6):992–1008. doi:10.1111/j.1365-2958.2009.06837.x PubMedCrossRefGoogle Scholar
  20. Escapa IF, Garcia JL, Buhler B, Blank LM, Prieto MA (2012) The polyhydroxyalkanoate metabolism controls carbon and energy spillage in Pseudomonas putida. Environ Microbiol 14(4):1049–1063. doi:10.1111/j.1462-2920.2011.02684.x PubMedCrossRefGoogle Scholar
  21. Gordon GC, McKinlay JB (2014) Calvin cycle mutants of photoheterotrophic purple nonsulfur bacteria fail to grow due to an electron imbalance rather than toxic metabolite accumulation. J Bacteriol 196(6):1231–1237. doi:10.1128/JB.01299-13 PubMedPubMedCentralCrossRefGoogle Scholar
  22. Grage K, Peters V, Palamisany R, Rehm BH (2009) Polyhydroxyalkanoates: from bacterial storage compound via renewable plastic bio-bead. In: Rehm BH (ed) Microbial production of polymers and polymer precursors: applications and perspectives. Causter Academic Press, Norfolk, UK, pp. 255–289Google Scholar
  23. Grammel H, Gilles ED, Ghosh R (2003) Microaerophilic cooperation of reductive and oxidative pathways allows maximal photosynthetic membrane biosynthesis in Rhodospirillum rubrum. Appl Environ Microbiol 69(11):6577–6586. doi:10.1128/Aem.69.11.6577-6586.2003 PubMedPubMedCentralCrossRefGoogle Scholar
  24. Green J, Paget MS (2004) Bacterial redox sensors. Nat Rev Microbiol 2(12):954–966. doi:10.1038/Nrmicro1022 PubMedCrossRefGoogle Scholar
  25. Hauf W, Schlebusch M, Hüge J, Kopka J, Hagemann M, Forchhammer K (2013) Metabolic changes in Synechocystis PCC6803 upon nitrogen starvation: excess NADPH sustains polyhydroxybutyrate accumulation. Metabolites 3(1):101–118. doi:10.3390/metabo3010101 PubMedPubMedCentralCrossRefGoogle Scholar
  26. Haywood GW, Anderson AJ, Chu L, Dawes EA (1988) The role of NADH-linked and NADPH-linked acetoacetyl-CoA reductases in the poly-3-hydroxybutyrate synthesizing organism Alcaligenes eutrophus. FEMS Microbiol Lett 52(3):259–264. doi:10.1111/J.1574-6968.1988.Tb02607.X CrossRefGoogle Scholar
  27. Huang Da W, Sherman BT, Lempicki RA (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37(1):1–13. doi:10.1093/nar/gkn923 PubMedCrossRefGoogle Scholar
  28. Imhoff JF, Trüper HG (1992) The genus Rhodospirillum and related genera. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer K-H (eds) Prokaryotes, 2nd edn. Berlin, Heidelberg, New York, Springer., pp. 2141–2155Google Scholar
  29. Jendrossek D, Pfeiffer D (2014) New insights in the formation of polyhydroxyalkanoate granules (carbonosomes) and novel functions of poly(3-hydroxybutyrate). Environ Microbiol 16(8):2357–2373. doi:10.1111/1462-2920.12356 PubMedCrossRefGoogle Scholar
  30. Kanemoto RH, Ludden PW (1987) Amino acid concentrations in Rhodospirillum rubrum during expression and switch-off of nitrogenase activity. J Bacteriol 169(7):3035–3043PubMedPubMedCentralGoogle Scholar
  31. Kennedy EP (2001) Hitler’s gift and the era of biosynthesis. J Biol Chem 276(46):42619–42631. doi:10.1074/Jbc.R100051200 PubMedCrossRefGoogle Scholar
  32. Klask C, Raberg M, Heinrich D, Steinbüchel A (2015) Heterologous expression of various PHA synthase genes in Rhodospirillum rubrum. Chem Biochem Eng Q 29(2):75–85CrossRefGoogle Scholar
  33. Kleijn RJ, Buescher JM, Le Chat L, Jules M, Aymerich S, Sauer U (2010) Metabolic fluxes during strong carbon catabolite repression by malate in Bacillus subtilis. J Biol Chem 285(3):1587–1596. doi:10.1074/Jbc.M109.061747 PubMedCrossRefGoogle Scholar
  34. Koller M, Bona R, Hermann C, Horvat P, Martinz J, Neto J, Pereira L, Varila P, Braunegg G (2005) Biotechnological production of poly(3-hydroxybutyrate) with Wautersia eutropha by application of green grass juice and silage juice as additional complex substrates. Biocatal Biotransfor 23(5):329–337. doi:10.1080/10242420500292252 CrossRefGoogle Scholar
  35. Kornberg HL, Lascelles J (1960) The formation of isocitratase by the Athiorhodaceae. J Gen Microbiol 23(3):511–517PubMedCrossRefGoogle Scholar
  36. Lageveen RG, Huisman GW, Preusting H, Ketelaar P, Eggink G, Witholt B (1988) Formation of polyesters by Pseudomonas oleovorans: effect of substrates on formation and composition of poly-(R)-3-hydroxyalkanoates and poly-(R)-3-hydroxyalkenoates. Appl Environ Microbiol 54(12):2924–2932PubMedPubMedCentralGoogle Scholar
  37. Laguna R, Tabita FR, Alber BE (2011) Acetate-dependent photoheterotrophic growth and the differential requirement for the Calvin-Benson-Bassham reductive pentose phosphate cycle in Rhodobacter sphaeroides and Rhodopseudomonas palustris. Arch Microbiol 193(2):151–154. doi:10.1007/S00203-010-0652-Y PubMedCrossRefGoogle Scholar
  38. Leustek T, Hartwig R, Weissbach H, Brot N (1988) Regulation of ribulose bisphosphate carboxylase expression in Rhodospirillum rubrum: characteristics of messenger RNA synthesized in vivo and in vitro. J Bacteriol 170(9):4065–4071PubMedPubMedCentralGoogle Scholar
  39. Lüderitz R, Klemme JH (1977) Isolation and characterization of a membrane-bound pyruvate-dehydrogenase complex from phototropic bacterium Rhodospirillum rubrum. Z Naturforsch C J Biosci 32(5–6):351–361Google Scholar
  40. Madison LL, Huisman GW (1999) Metabolic engineering of poly(3-hydroxyalkanoates): from DNA to plastic. Microbiol Mol Biol R 63(1):21−+Google Scholar
  41. Meijer WG, Dijkhuizen L (1988) Regulation of autotrophic metabolism in Pseudomonas oxalaticus OX1 wild-type and an isocitrate-lyase-deficient mutant. J Gen Microbiol 134:3231–3237PubMedGoogle Scholar
  42. Munk AC, Copeland A, Lucas S, Lapidus A, Del Rio TG, Barry K, Detter JC, Hammon N, Israni S, Pitluck S, Brettin T, Bruce D, Han C, Tapia R, Gilna P, Schmutz J, Larimer F, Land M, Kyrpides NC, Mavromatis K, Richardson P, Rohde M, Goker M, Klenk HP, Zhang YP, Roberts GP, Reslewic S, Schwartz DC (2011) Complete genome sequence of Rhodospirillum rubrum type strain (S1(T)). Stand Genomic Sci 4(3):293–302. doi:10.4056/Sigs.1804360 PubMedPubMedCentralCrossRefGoogle Scholar
  43. Ormerod JG, Gest H, Ormerod KS (1961) Light-dependent utilization of organic compounds and photoproduction of molecular hydrogen by photosynthetic bacteria—relationships with nitrogen metabolism. Arch Biochem Biophys 94(3):449-&. doi:10.1016/0003-9861(61)90073-X
  44. Pearce FG (2006) Catalytic by-product formation and ligand binding by ribulose bisphosphate carboxylases from different phylogenies. Biochem J 399:525–534. doi:10.1042/Bj20060430 PubMedPubMedCentralCrossRefGoogle Scholar
  45. Pham TH, Webb JS, Rehm BH (2004) The role of polyhydroxyalkanoate biosynthesis by Pseudomonas aeruginosa in rhamnolipid and alginate production as well as stress tolerance and biofilm formation. Microbiol SGM 150(Pt 10):3405–3413. doi:10.1099/mic.0.27357-0 CrossRefGoogle Scholar
  46. Raberg M, Voigt B, Hecker M, Steinbüchel A (2014) A closer look on the polyhydroxybutyrate- (PHB-) negative phenotype of Ralstonia eutropha PHB(−)4. Plos One 9(5) ARTN e95907. doi:10.1371/journal.pone.0095907
  47. Reid CD, Tissue DT, Fiscus EL, Strain BR (1997) Comparison of spectrophotometric and radioisotopic methods for the assay of Rubisco in ozone-treated plants. Physiol Plant 101(2):398–404. doi:10.1111/j.1399-3054.1997.tb01014.x CrossRefGoogle Scholar
  48. Rudolf C, Grammel H (2012) Fructose metabolism of the purple non-sulfur bacterium Rhodospirillum rubrum: effect of carbon dioxide on growth, and production of bacteriochlorophyll and organic acids. Enzym Microb Technol 50(4–5):238–246. doi:10.1016/j.enzmictec.2012.01.007 CrossRefGoogle Scholar
  49. Scheiner D (1976) Determination of ammonia and Kjeldahl nitrogen by indophenol method. Water Res 10(1):31–36. doi:10.1016/0043-1354(76)90154-8 CrossRefGoogle Scholar
  50. Selao TT, Edgren T, Wang H, Noren A, Nordlund S (2011) Effect of pyruvate on the metabolic regulation of nitrogenase activity in Rhodospirillum rubrum in darkness. Microbiol SGM 157:1834–1840. doi:10.1099/Mic.0.045831-0 CrossRefGoogle Scholar
  51. Smith RL, West TP, Gibbons WR (2008) Rhodospirillum rubrum: utilization of condensed corn solubles for poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) production. J Appl Microbiol 104(5):1488–1494. doi:10.1111/j.1365-2672.2007.03685.x PubMedCrossRefGoogle Scholar
  52. Steinbüchel A, Lütke-Eversloh T (2003) Metabolic engineering and pathway construction for biotechnological production of relevant polyhydroxyalkanoates in microorganisms. Biochem Eng J 16(2):81–96. doi:10.1016/S1369-703x(03)00036-6 CrossRefGoogle Scholar
  53. Uchino K, Saito T, Gebauer B, Jendrossek D (2007) Isolated poly(3-hydroxybutyrate) (PHB) granules are complex bacterial organelles catalyzing formation of PHB from acetyl coenzyme A (CoA) and degradation of PHB to acetyl-CoA. J Bacteriol 189(22):8250–8256. doi:10.1128/Jb.00752-07 PubMedPubMedCentralCrossRefGoogle Scholar
  54. Verlinden RAJ, Hill DJ, Kenward MA, Williams CD, Radecka I (2007) Bacterial synthesis of biodegradable polyhydroxyalkanoates. J Appl Microbiol 102(6):1437–1449. doi:10.1111/j.1365-2672.2007.03335.x PubMedCrossRefGoogle Scholar
  55. Wang WX, Zhou HH, Lin H, Roy S, Shaler TA, Hill LR, Norton S, Kumar P, Anderle M, Becker CH (2003) Quantification of proteins and metabolites by mass spectrometry without isotopic labeling or spiked standards. Anal Chem 75(18):4818–4826. doi:10.1021/Ac026468x PubMedCrossRefGoogle Scholar
  56. Zhao YH, Li HM, Qin LF, Wang HH, Chen GQ (2007) Disruption of the polyhydroxyalkanoate synthase gene in Aeromonas hydrophila reduces its survival ability under stress conditions. FEMS Microbiol Lett 276(1):34–41. doi:10.1111/j.1574-6968.2007.00904.x PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Tanja Narancic
    • 1
    • 2
  • Elisa Scollica
    • 1
    • 2
  • Shane T. Kenny
    • 3
  • Helena Gibbons
    • 4
  • Eibhlin Carr
    • 4
  • Lorraine Brennan
    • 4
  • Gerard Cagney
    • 5
  • Kieran Wynne
    • 5
  • Cormac Murphy
    • 2
  • Matthias Raberg
    • 6
  • Daniel Heinrich
    • 6
  • Alexander Steinbüchel
    • 6
    • 7
  • Kevin E. O’Connor
    • 1
    • 2
  1. 1.UCD Earth Institute, O’Brien Centre for ScienceUniversity College DublinDublin 4Ireland
  2. 2.School of Biomolecular and Biomedical ScienceUniversity College DublinDublin 4Ireland
  3. 3.NovaUCD, Belfield Innovation ParkUniversity College Dublin, Bioplastech Ltd.Dublin 4Ireland
  4. 4.Institute of Food and Health and Conway InstituteUniversity College DublinDublin 4Ireland
  5. 5.School of Biomolecular and Biomedical Sciences, ConwayUniversity College DublinDublin 4Ireland
  6. 6.Institut für Molekulare Mikrobiologie und BiotechnologieWestfälische Wilhelms-UniversitätMünsterGermany
  7. 7.Environmental Sciences DepartmentKing Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations