Applied Microbiology and Biotechnology

, Volume 100, Issue 16, pp 6981–6990 | Cite as

Candida utilis and Cyberlindnera (Pichia) jadinii: yeast relatives with expanding applications

  • Christoph Buerth
  • Denis Tielker
  • Joachim F. ErnstEmail author


The yeast Candida utilis is used as a food additive and as a host for heterologous gene expression to produce various metabolites and proteins. Reliable protocols for intracellular production of recombinant proteins are available for C. utilis and have now been expanded to secrete proteins into the growth medium or to achieve surface display by linkage to a cell wall protein. A recombinant C. utilis strain was recently shown to induce oral tolerance in a mouse model of multiple sclerosis suggesting future applications in autoimmune therapy. Whole genome sequencing of C. utilis and its presumed parent Cyberlindnera (Pichia) jadinii demonstrated different ploidy but high sequence identity, consistent with identical recombinant technologies for both yeasts. C. jadinii was recently described as an antagonist to the important human fungal pathogen Candida albicans suggesting its use as a probiotic agent. The review summarizes the status of recombinant protein production in C. utilis, as well as current and future biotechnological and medical applications of C. utilis and C. jadinii.


Candida utilis Torula Cyberlindnera jadinii Pichia jadinii Candida albicans Heterologous gene expression Secretion Surface display Immunological tolerance 



The work in the laboratory of the authors was funded in part by the Cluster of Industrial Biotechnology NRW CLIB2021.

Compliance with ethical standards

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Bekatorou A, Psaríanos C, Koutinas AA (2006) Production of food grade yeasts. Food Technol Biotechnol 44:407–415Google Scholar
  2. Belcarz A, Ginalska G, Lobarzewski J, Penel C (2002) The novel non-glycosylated invertase from Candida utilis (the properties and the conditions of production and purification). Biochim Biophys Acta 1594:40–53CrossRefPubMedGoogle Scholar
  3. Boňková H, Osadská M, Krahulec J, Lišková V, Stuchlík S, Turňa J (2014) Upstream regulatory regions controlling the expression of the Candida utilis maltase gene. J Biotechnol 189:136–142CrossRefPubMedGoogle Scholar
  4. Boze H, Moulin G, Galzy P (1992) Production of food and fodder yeasts. Crit Rev Biotechnol 12:65–86CrossRefPubMedGoogle Scholar
  5. Buerth C, Heilmann CJ, Klis FM, de Koster CG, Ernst JF, Tielker D (2011) Growth-dependent secretome of Candida utilis. Microbiology 157:2493–2503CrossRefPubMedGoogle Scholar
  6. Buerth C, Mausberg AK, Heininger MK, Hartung HP, Kieseier BC, Ernst JF (2016) Oral tolerance induction in experimental autoimmune encephalomyelitis with Candida utilis expressing the immunogenic MOG35-55 peptide. PLoS One 5:e0155082CrossRefGoogle Scholar
  7. Chan HT, Daniell H (2015) Plant-made oral vaccines against human infectious diseases—are we there yet? Plant Biotechnol J 13:1056–1070CrossRefPubMedPubMedCentralGoogle Scholar
  8. De Jesus M, Rodriguez AE, Yagita H, Ostroff GR, Mantis NJ (2015) Sampling of Candida albicans and Candida tropicalis by Langerin-positive dendritic cells in mouse Peyer’s patches. Immunol Lett 168:64–72CrossRefPubMedGoogle Scholar
  9. Delic M, Valli M, Graf AB, Pfeffer M, Mattanovich D, Gasser B (2013) The secretory pathway: exploring yeast diversity. FEMS Microbiol Rev 37:872–914CrossRefPubMedGoogle Scholar
  10. Dworschack RG, Wickerham LJ (1961) Production of extracellular and total invertase by Candida utilis, Saccharomyces cerevisiae, and other yeasts. Appl Microbiol 9:291–294PubMedPubMedCentralGoogle Scholar
  11. Eisenhaber B, Schneider G, Wildpaner M, Eisenhaber F (2004) A sensitive predictor for potential GPI lipid modification sites in fungal protein sequences and its application to genome-wide studies for Aspergillus nidulans, Candida albicans, Neurospora crassa, Saccharomyces cerevisiae and Schizosaccharomyces pombe. J Mol Biol 337:243–253CrossRefPubMedGoogle Scholar
  12. Enloe B, Diamond A, Mitchell AP (2000) A single-transformation gene function test in diploid Candida albicans. J Bacteriol 182:5730–5736CrossRefPubMedPubMedCentralGoogle Scholar
  13. Feng T, Elson CO (2011) Adaptive immunity in the host-microbiota dialog. Mucosal Immunol 4:15–21CrossRefPubMedGoogle Scholar
  14. Frieman MB, Cormack BP (2004) Multiple sequence signals determine the distribution of glycosylphosphatidylinositol proteins between the plasma membrane and cell wall in Saccharomyces cerevisiae. Microbiologica 150:3105–3114Google Scholar
  15. Fujino S, Akiyama D, Akaboshi S, Fujita T, Watanabe Y, Tamai Y (2006) Purification and characterization of phospholipase B from Candida utilis. Biosci Biotechnol Biochem 70:377–386CrossRefPubMedGoogle Scholar
  16. Gellissen G, Kunze G, Gaillardin C, Cregg JM, Berardi E, Veenhuis M, van der Klei I (2005) New yeast expression platforms based on methylotrophic Hansenula polymorpha and Pichia pastoris and on dimorphic Arxula adeninivorans and Yarrowia lipolytica—a comparison. FEMS Yeast Res 5:1079–1096CrossRefPubMedGoogle Scholar
  17. Henneberg W (1926) Handbuch der Gärungsbakteriologie, 2. Aufl. Bd.2. Paul Parey, BerlinGoogle Scholar
  18. Hong YR, Chen YL, Farh L, Yang WJ, Liao CH, Shiuan D (2006) Recombinant Candida utilis for the production of biotin. Appl Microbiol Biotechnol 71:211–221CrossRefPubMedGoogle Scholar
  19. Idiris A, Tohda H, Kumagai H, Takegawa K (2010) Engineering of protein secretion in yeast: strategies and impact on protein production. Appl Microbiol Biotechnol 86:403–417CrossRefPubMedGoogle Scholar
  20. Ikushima S, Fujii T, Kobayashi O (2009a) Efficient gene disruption in the high-ploidy yeast Candida utilis using the Cre-loxP system. Biosci Biotechnol Biochem 73:879–884CrossRefPubMedGoogle Scholar
  21. Ikushima S, Fujii T, Kobayashi O, Yoshida S, Yoshida A (2009b) Genetic engineering of Candida utilis yeast for efficient production of L-lactic acid. Biosci Biotechnol Biochem 73:1818–1824CrossRefPubMedGoogle Scholar
  22. Ikushima S, Minato T, Kondo K (2009c) Identification and application of novel autonomously replicating sequences (ARSs) for promoter-cloning and co-transformation in Candida utilis. Biosci Biotechnol Biochem 73:152–159CrossRefPubMedGoogle Scholar
  23. Inskeep GC, Wiley AJ, Holderby JM, Hughes LP (1951) Food yeast from sulfite liquor. Ind Eng Chem 43:1702–1711CrossRefGoogle Scholar
  24. Iwakiri R, Eguchi S, Noda Y, Adachi H, Yoda K (2005a) Isolation and structural analysis of efficient autonomously replicating sequences (ARSs) of the yeast Candida utilis. Yeast 22:1049–1060CrossRefPubMedGoogle Scholar
  25. Iwakiri R, Noda Y, Adachi H, Yoda K (2005b) Isolation of the YAP1 homologue of Candida utilis and its use as an efficient selection marker. Yeast 22:1079–1087CrossRefPubMedGoogle Scholar
  26. Iwakiri R, Noda Y, Adachi H, Yoda K (2006) Isolation and characterization of promoters suitable for a multidrug-resistant marker CuYAP1 in the yeast Candida utilis. Yeast 23:23–24CrossRefPubMedGoogle Scholar
  27. Khan TR, Daugulis AJ (2010) Application of solid-liquid TPPBs to the production of L-phenylacetylcarbinol from benzaldehyde using Candida utilis. Biotechnol Bioeng 107:633–641CrossRefPubMedGoogle Scholar
  28. Kogan G, Sandula J, Simkovicova V (1993) Glucomannan from Candida utilis. Struct Investig Folia Microbiol (Praha) 38:219–224CrossRefGoogle Scholar
  29. Kondo K, Saito T, Kajiwara S, Takagi M, Misawa N (1995) A transformation system for the yeast Candida utilis: use of a modified endogenous ribosomal protein gene as a drug-resistant marker and ribosomal DNA as an integration target for vector DNA. J Bacteriol 177:7171–7177PubMedPubMedCentralGoogle Scholar
  30. Kondo K, Miura Y, Sone H, Kobayashi K, Iijima H (1997) High-level expression of a sweet protein, monellin, in the food yeast Candida utilis. Nat Biotechnol 15:453–457CrossRefPubMedGoogle Scholar
  31. Kunigo M, Bürth C, Tielker D, Ernst JF (2013) Heterologous protein secretion by Candida utilis. Appl Microbiol Biotechnol 97:7357–7368CrossRefPubMedGoogle Scholar
  32. Kunigo M, Buerth C, Ernst JF (2015) Secreted xylanase XynA mediates utilization of xylan as sole carbon source in Candida utilis. Appl Microbiol Biotechnol 99:8055–8064CrossRefPubMedGoogle Scholar
  33. Kurtzman CP, Johnson CJ, Smiley MJ (1979) Determination of conspecificity of Candida utilis and Hansenula jadinii through DNA reassociation. Mycologia 11:844–847CrossRefPubMedGoogle Scholar
  34. Kurtzman R, Basehoar-Powers (2011) The yeasts—a taxonomic study, vol. 1, 5 edn. Elsevier, London, Burlington, San DiegoGoogle Scholar
  35. Lamichhane A, Azegamia T, Kiyonoa H (2014) The mucosal immune system for vaccine development. Vaccine 32:6711–6723CrossRefPubMedGoogle Scholar
  36. Lawford GR, Kligeman A, Williams T (1979) Production of high-quality edible protein from Candida yeast grown in continuous culture. Biotechnol Bioeng 21:1163–1173CrossRefGoogle Scholar
  37. Li Y, Wei G, Chen J (2004) Glutathione: a review on biotechnological production. Appl Microbiol Biotechnol 66:233–242CrossRefPubMedGoogle Scholar
  38. Lycke N (2012) Recent progress in mucosal vaccine development: potential and limitations. Nat Rev Immunol 12:592–605CrossRefPubMedGoogle Scholar
  39. Madzak C, Gaillardin C, Beckerich JM (2004) Heterologous protein expression and secretion in the non-conventional yeast Yarrowia lipolytica: a review. J Biotechnol 109:63–81CrossRefPubMedGoogle Scholar
  40. Mallet S, Weiss S, Jacques N, Leh-Louis V, Sacerdot C, Casaregola S (2012) Insights into the life cycle of yeasts from the CTG clade revealed by the analysis of the Millerozyma (Pichia) farinosa species complex. PLoS One 7:e35842CrossRefPubMedPubMedCentralGoogle Scholar
  41. Minter DW (2009) Cyberlindnera, a replacement name for Lindnera Kurtzman et al., nom. illegit. Mycotaxon 110:473–476CrossRefGoogle Scholar
  42. Miura Y, Kondo K, Shimada H, Saito T, Nakamura K, Misawa N (1998a) Production of lycopene by the food yeast, Candida utilis that does not naturally synthesize carotenoid. Biotechnol Bioeng 58:306–308CrossRefPubMedGoogle Scholar
  43. Miura Y, Kondo K, Saito S, Shimada H, Fraser PD, Misawa N (1998b) Production of the carotenoids lycopene, β-carotene, and astaxanthin in the food yeast Candida utilis. Appl Environ Microbiol 64:1226–1229PubMedPubMedCentralGoogle Scholar
  44. Miura Y, Kettoku M, Kato M, Kobayashi K, Kondo K (1999) High level production of thermostable α-amylase from Sulfolobus solfataricus in high-cell density culture of the food yeast Candida utilis. J Mol Microbiol Biotechnol 1:129–134PubMedGoogle Scholar
  45. Mukherjee PK, Chandra J, Retuerto M, Sikaroodi M, Brown RE, Jurevic R, Salata RA, Lederman MM, Gillevet PM, Ghannoum MA (2014) Oral mycobiome analysis of HIV-infected patients: identification of Pichia as an antagonist of opportunistic fungi. PLoS Pathog 10:e1003996CrossRefPubMedPubMedCentralGoogle Scholar
  46. Müller G (2011) Novel applications for glycosylphosphatidylinositol-anchored proteins in pharmaceutical and industrial biotechnology. Mol Membr Biol 28:187–205CrossRefPubMedGoogle Scholar
  47. Pfaller MA, Diekema DJ (2007) Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev 20:133–163CrossRefPubMedPubMedCentralGoogle Scholar
  48. Rodriguez L, Chavez FP, Basabe L, Rivero T, Delgado JM (1998) Development of an integrative DNA transformation system for the yeast Candida utilis. FEMS Microbiol Lett 165:335–340CrossRefPubMedGoogle Scholar
  49. Ruszova E, Pavek S, Hajkova V, Jandova S, Velebny V, Papezikova I, Kubala L (2008) Photoprotective effects of glucomannan isolated from Candida utilis. Carbohydr Res 343:501–511CrossRefPubMedGoogle Scholar
  50. Rupp O, Brinkrolf K, Buerth C, Kunigo M, Schneider J, Jaenicke S, Goesmann A, Pühler A, Jaeger KE, Ernst JF (2015) The structure of the Cyberlindnera jadinii genome and its relation to Candida utilis analyzed by the occurrence of single nucleotide polymorphisms. J Biotechnol 211:20–30CrossRefPubMedGoogle Scholar
  51. Schmidt FR (2004) Recombinant expression systems in the pharmaceutical industry. Appl Microbiol Biotechnol 65:363–372CrossRefPubMedGoogle Scholar
  52. Shimada H, Kondo K, Fraser PD, Miura Y, Saito T, Misawa N (1998) Increased carotenoid production by the food yeast Candida utilis through metabolic engineering of the isoprenoid pathway. Appl Environ Microbiol 64:2676–2680PubMedPubMedCentralGoogle Scholar
  53. Slot JC, Hibbett DS (2007) Horizontal transfer of a nitrate assimilation gene cluster and ecological transitions in fungi: a phylogenetic study. PLoS One 10:e1097CrossRefGoogle Scholar
  54. Stoltenburg R, Klinner U, Ritzerfeld P, Zimmermann M, Emeis CC (1992) Genetic diversity of the yeast Candida utilis. Curr Genet 22:441–446CrossRefPubMedGoogle Scholar
  55. Su GD, Huang DF, Han SY, Zheng SP, Lin Y (2010) Display of Candida antarctica lipase B on Pichia pastoris and its application to flavor ester synthesis. Appl Microbiol Biotechnol 86:1493–1501CrossRefPubMedGoogle Scholar
  56. Tamakawa H, Ikushima S, Yoshida S (2010a) Efficient production of L-lactic acid from xylose by a recombinant Candida utilis strain. J Biosci Bioeng 113:73–75CrossRefGoogle Scholar
  57. Tamakawa H, Ikushima S, Yoshida S (2010b) Ethanol production from xylose by a recombinant Candida utilis strain expressing protein-engineered xylose reductase and xylitol dehydrogenase. Biosci Biotechnol Biochem 75:1994–2000CrossRefGoogle Scholar
  58. Tamakawa H, Ikushima S, Yoshida S (2013a) Construction of a Candida utilis strain with ratio-optimized expression of xylose-metabolizing enzyme genes by cocktail multicopy integration method. J Biosci Bioeng 115:532–539CrossRefPubMedGoogle Scholar
  59. Tamakawa H, Mita T, Yokoyama A, Ikushima S, Yoshida S (2013b) Metabolic engineering of Candida utilis for isopropanol production. Appl Microbiol Biotechnol 97:6231–6239CrossRefPubMedGoogle Scholar
  60. Tanaka T, Yamada R, Ogino C, Kondo A (2012) Recent developments in yeast cell surface display toward extended applications in biotechnology. Appl Microbiol Biotechnol 95:577–591CrossRefPubMedGoogle Scholar
  61. Thévenot J, Cordonnier C, Rougeron A, Le Goff O, Nguyen HT, Denis S, Alric M, Livrelli V, Blanquet-Diot S (2015) Enterohemorrhagic Escherichia coli infection has donor-dependent effect on human gut microbiota and may be antagonized by probiotic yeast during interaction with Peyer’s patches. Appl Microbiol Biotechnol 99:9097–9110CrossRefPubMedGoogle Scholar
  62. Thompson AL, Johnson BT, Sempowski GD, Gunn MD, Hou B, DeFranco AL, Staats HF (2012) Maximal adjuvant activity of nasally delivered IL-1α requires adjuvant-responsive CD11c(+) cells and does not correlate with adjuvant-induced in vivo cytokine production. J Immunol 188:2834–2846CrossRefPubMedPubMedCentralGoogle Scholar
  63. Tomita Y, Ikeo K, Tamakawa H, Gojobori T, Ikushima S (2012) Genome and transcriptome analysis of the food-yeast Candida utilis. PLoS One 7:e37226CrossRefPubMedPubMedCentralGoogle Scholar
  64. Van Ooyen AJ, Dekker P, Huang M, Olsthoorn MM, Jacobs DI, Colussi PA, Taron CH (2006) Heterologous protein production in the yeast Kluyveromyces lactis. FEMS Yeast Res 6:381–392CrossRefPubMedGoogle Scholar
  65. Wang DH, Zhang JL, Dong YY, Wei GY, Qi B (2015) Glutathione is involved in physiological response of Candida utilis to acid stress. Appl Microbiol Biotechnol 99:10669–10679CrossRefPubMedGoogle Scholar
  66. Wei W, Hong-Lan Y, Huifang B, Daoyuan Z, Qi-Mu-Ge S, Wood AJ (2010) The effective expression of xylanase gene in Candida utilis by 18S rDNA targeted homologous recombination in pGLR9K. Mol Biol Rep 37:2615–2620CrossRefPubMedGoogle Scholar
  67. Yamada Y, Matsuda M, Mikata K (1995) The phylogenetic relationships of Pichia jadinii, formerly classified in the genus Hansenula, and related species based on the partial sequence of 18S and 26S ribosomal RNAs (Saccharomycetaceae). Biosci Biotechnol Biochem 59:518–520CrossRefPubMedGoogle Scholar
  68. Yanai T, Sato M (2001) Purification and characterization of a beta-D-xylosidase from Candida utilis IFO 0639. Biosci Biotechnol Biochem 65:527–533CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Christoph Buerth
    • 1
  • Denis Tielker
    • 2
  • Joachim F. Ernst
    • 1
    Email author
  1. 1.Department Biologie, Molekulare MykologieHeinrich-Heine-UniversitätDüsseldorfGermany
  2. 2.Qiagen GmbHHildenGermany

Personalised recommendations