Applied Microbiology and Biotechnology

, Volume 100, Issue 20, pp 8931–8942 | Cite as

Biological devulcanization of ground natural rubber by Gordonia desulfuricans DSM 44462T strain

  • Valeria Tatangelo
  • Ivan Mangili
  • Paola Caracino
  • Manuela Anzano
  • Ziba Najmi
  • Giuseppina Bestetti
  • Elena Collina
  • Andrea Franzetti
  • Marina Lasagni
Environmental biotechnology


Due to the rapid increase of waste vulcanized rubber products, the development of low-cost, efficient, and selective devulcanization processes is needed. In this paper, the devulcanization ability of Gordonia desulfuricans DSM 44462T was evaluated by a design of experiments. The aim of the experimental design was to investigate the importance of parameters influencing the bacterial growth, such as the glucose concentration (C), dibenzothiophene concentration (DBT), and initial biomass (optical density, OD) in biodevulcanization process. The complex viscosity (η*) was chosen as experimental response for the experimental design. A multiple linear regression was used to model the relationship between the response and the process variables. In addition, the crosslink density and gel fraction were measured. Furthermore, the automated ribosomal intergenic spacer analysis (ARISA) as a microbiological method was performed to assess the persistence of the inoculated strain during the experiments. Reduced regression models were obtained considering only the significant variables and interactions. The glucose concentration C and OD variables and C–DBT and DBT–OD interactions resulted to the relevant parameters for the process. The fingerprinting showed the persistence of G. desulfuricans DSM 44462T, despite the presence of other bacterial population after the VGNR sterilization. These results highlight the importance to support the physics analysis with microbiological analyses to evaluate the bacterial persistence during the treatment.


Recycling Vulcanized ground natural rubber Biological devulcanization Gordonia desulfuricans DSM 44462T ARISA 


Compliance with ethical standards

Ethical statements

This work was partially funded by Fondazione Silvio Tronchetti-Provera which also supported PhD fellowship to VT. The author Paola Caracino is an employer of Pirelli Spa, which is a tire producing manufacturer. This article does not contain any studies with human participants or animals performed by any of the authors

Supplementary material

253_2016_7691_MOESM1_ESM.pdf (480 kb)
ESM 1 (PDF 479 kb)


  1. Adhikari B, De D, Maiti S (2000) Reclamation and recycling of waste rubber. Prog Polym Sci 25:909–948. doi: 10.1016/S0079-6700(00)00020-4 CrossRefGoogle Scholar
  2. Aminsefat A, Rasekh B, Ardakani MR (2012) Biodesulfurization of dibenzothiophene by Gordonia sp. AHV-01 and optimization by using of response surface design procedure. Microbiology 81:154–159. doi: 10.1134/S0026261712020026 CrossRefGoogle Scholar
  3. Bertolini V, Gandolfi I, Ambrosini R, Bestetti G, Innocente E, Rampazzo G, Franzetti A (2013) Temporal variability and effect of environmental variables on airborne bacterial communities in an urban area of Northern Italy. Appl Microbiol Biotechnol 97:6561–6570. doi: 10.1007/s00253-012-4450-0 CrossRefPubMedGoogle Scholar
  4. Bhatia S, Sharma DK (2010) Biodesulfurization of dibenzothiophene, its alkylated derivatives and crude oil by a newly isolated strain Pantoea agglomerans D23W3. Biochem Eng J 50:104–109. doi: 10.1016/j.bej.2010.04.001 CrossRefGoogle Scholar
  5. Box GPE, Hunter WG, Hunter JS (1978) Statistics for experimenters, 2nd edn. Wiley, HobokenGoogle Scholar
  6. Cardinale M, Brusetti L, Quatrini P, Borin S, Puglia AM, Rizzi A, Zanardini E, Sorlini C, Corselli C, Daffonchio D (2004) Comparison of different primer sets for use in automated ribosomal intergenic spacer analysis of complex bacterial communities comparison of different primer sets for use in automated ribosomal intergenic spacer analysis of complex bacterial communities. Appl Environ Microbiol 70:6147–6156. doi: 10.1128/AEM.70.10.6147 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Chaikumpollert O, Sae-Heng K, Wakisaka O, Mase A, Yamamoto Y, Kawahara S (2011) Low temperature degradation and characterization of natural rubber. Polym Degrad Stab 96:1989–1995. doi: 10.1016/j.polymdegradstab.2011.08.010 CrossRefGoogle Scholar
  8. Chang JH, Rhee SK, Chang YK, Chang HN (1998) Desulfurization of diesel oils by a newly isolated dibenzothiophene-degrading Nocardia sp. strain CYKS2. Biotechnol Prog 14:851–855. doi: 10.1021/bp9800788 CrossRefPubMedGoogle Scholar
  9. Christofi N, Geoffrey J, Edward D (2010) Rubber treatment method.Google Scholar
  10. Davoodi-Dehaghani F, Vosoughi M, Ziaee AA (2010) Biodesulfurization of dibenzothiophene by a newly isolated Rhodococcus erythropolis strain. Bioresour Technol 101:1102–1105. doi: 10.1016/j.biortech.2009.08.058 CrossRefPubMedGoogle Scholar
  11. Duarte GF, Rosado AS, Seldin L, De Araujo W, Van Elsas JD (2001) Analysis of bacterial community structure in sulfurous-oil-containing soils and detection of species carrying dibenzothiophene desulfurization (dsz) genes. Appl Environ Microbiol 67:1052–1062. doi: 10.1128/AEM.67.3.1052-1062.2001 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Eriksson L, Johansson E, Kettaneh-Wold N, Wikström C, Wold S (2008) Design of experiments principles and applications, 3rd edn UmeaGoogle Scholar
  13. Flory PJ, Rehner JJ (1943) Statistical mechanics of cross-linked polymer networks. J Chem Phys 11:512–520. doi: 10.1063/1.1723792 CrossRefGoogle Scholar
  14. Horikx MM (1956) Chain scissions in a polymer network. J Polym Sci 19:445–454. doi: 10.1002/pol.1956.120199305 CrossRefGoogle Scholar
  15. Hu M, Zhao S, Li C, Wang B, Yao C, Wang Y (2014) The influence of different Tween surfactants on biodesulfurization of ground tire rubber by Sphingomonas sp. Polym Degrad Stab 107:91–97. doi: 10.1016/j.polymdegradstab.2014.04.025 CrossRefGoogle Scholar
  16. Huang K, Isayev AI (2014) Ultrasonic decrosslinking of crosslinked high-density polyethylene: effect of degree of crosslinking. RSC Adv 4:38877–38892. doi: 10.1039/C4RA04860A CrossRefGoogle Scholar
  17. Imai S, Ichikawa K, Muramatsu Y, Kasai D, Masai E, Fukuda M (2011) Isolation and characterization of Streptomyces, Actinoplanes, and Methylibium strains that are involved in degradation of natural rubber and synthetic poly(cis-1,4-isoprene). Enzym Microb Technol 49:526–531. doi: 10.1016/j.enzmictec.2011.05.014 CrossRefGoogle Scholar
  18. Isayev AI (2014) Recycling of rubbers. In: Mark J, Erman B, Roland M (eds) The Science and Technology of Rubber, 4th edn. Elsevier Academic Press, Boston, pp. 697–764Google Scholar
  19. Jendrossek D, Tomasi G, Kroppenstedt RM (1997) Bacterial degradation of natural rubber: a privilege of actinomycetes? FEMS Microbiol Lett 150:179–188CrossRefPubMedGoogle Scholar
  20. Jiang G, Zhao S, Luo J, Wang Y, Yu W, Zhang C (2010) Microbial desulfurization for NR ground rubber by Thiobacillus ferrooxidans. J Appl Polym Sci 116:2768–2774. doi: 10.1002/app.31904 Google Scholar
  21. Kanwal N, Shah AA, Qayyum S, Hasan F (2015) Optimization of pH and temperature for degradation of tyre rubber by Bacillus sp. strain S10 isolated from sewage sludge. Int Biodeterior Biodegrad 103:154–160. doi: 10.1016/j.ibiod.2015.05.009 CrossRefGoogle Scholar
  22. Kim SB, Brown R, Oldfield C, Gilbert SC, Goodfellow M (1999) Gordonia desulfuricans sp. nov., a benzothiophene-desulphurizing actinomycete. Int J Syst Bacteriol 49(Pt 4):1845–1851. doi: 10.1099/00207713-49-4-1845 CrossRefPubMedGoogle Scholar
  23. Kojima M, Ogawa K, Mizoshima H, Tosaka M, Kohjiya S, Ikeda Y (2003) Devulcanization of sulfur-cured isoprene rubber in supercritical carbon dioxide. Rubber Chem Technol 76:957–968. doi: 10.5254/1.3547784 CrossRefGoogle Scholar
  24. Li Y, Zhao S, Wang Y (2012) Microbial desulfurization of ground tire rubber by Sphingomonas sp.: a novel technology for crumb rubber composites. J Polym Environ 20:372–380. doi: 10.1007/s10924-011-0386-1
  25. Li Y, Zhao S, Wang Y (2011) Microbial desulfurization of ground tire rubber by Thiobacillus ferrooxidans. Polym Degrad Stab 96:1662–1668. doi: 10.1016/j.polymdegradstab.2011.06.011 CrossRefGoogle Scholar
  26. Linos A, Berekaa MM, Steinbüchel A, Kim KK, Spröer C, Kroppenstedt RM (2002) Gordonia westfalica sp. nov., a novel rubber-degrading actinomycete. Int J Syst Evol Microbiol 52:1133–1139. doi: 10.1099/ijs.0.02107-0 PubMedGoogle Scholar
  27. Mangili I, Collina E, Anzano M, Pitea D, Lasagni M (2014a) Characterization and supercritical CO2 devulcanization of cryo-ground tire rubber: influence of devulcanization process on reclaimed material. Polym Degrad Stab 102:15–24. doi: 10.1016/j.polymdegradstab.2014.02.017 CrossRefGoogle Scholar
  28. Mangili I, Oliveri M, Anzano M, Collina E, Pitea D, Lasagni M (2014b) Full factorial experimental design to study the devulcanization of ground tire rubber in supercritical carbon dioxide. J Supercrit Fluids 92:249–256. doi: 10.1016/j.supflu.2014.06.001 CrossRefGoogle Scholar
  29. Myers RH, Montgomery DC (2002) Response surface methodology: process and product optimization using designed experiments, 3rd Edition - Raymond H. Myers, Douglas C. Montgomery, Christine M. Anderson-Cook, 2nd edn. Wiley, New YorkGoogle Scholar
  30. Oldfield C, Pogrebinsky O, Simmonds J, Edwin ES, Kulpa CF (1997) Elucidation of the metabolic pathway for dibenzothiophene desulphurization by Rhodococcus sp. strain IGTS8 (ATCC 53968). Microbiology 143:2961–2973CrossRefPubMedGoogle Scholar
  31. Papizadeh M, Ardakani MR, Motamedi H, Rasouli I, Zarei M (2011) C-S targeted biodegradation of dibenzothiophene by Stenotrophomonas sp. NISOC-04. Appl Biochem Biotechnol 165:938–948. doi: 10.1007/s12010-011-9310-3 CrossRefPubMedGoogle Scholar
  32. Rader CP (2001) Basic elastomer technology. In: Baranwal KC, Stephens HL (eds) Basic elastomer technology. The Rubber Division American Chemical Society, Akron, pp. 165–190Google Scholar
  33. Rajan VV, Dierkes WK, Joseph R, Noordermeer JWM (2006) Science and technology of rubber reclamation with special attention to NR-based waste latex products. Prog Polym Sci 31:811–834. doi: 10.1016/j.progpolymsci.2006.08.003 CrossRefGoogle Scholar
  34. Romine RA, Romine MF (1998) Rubbercycle: a bioprocess for surface modification of waste tyre rubber. Polym Degrad Stab 59:353–358CrossRefGoogle Scholar
  35. Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (complete samples) on JSTOR. Biometrika 52:591–611CrossRefGoogle Scholar
  36. Valentín JL, Carretero-González J, Mora-Barrantes I, Chassé W, Saalwächter K (2008) Uncertainties in the determination of cross-link density by equilibrium swelling experiments in natural rubber. Macromolecules 41:4717–4729CrossRefGoogle Scholar
  37. Wang G, Paredes-Sabja D, Sarker MR, Green C, Setlow P, Li Y-Q (2012) Effects of wet heat treatment on the germination of individual spores of Clostridium perfringens. J Appl Microbiol 113:824–836. doi: 10.1111/j.1365-2672.2012.05387.x CrossRefPubMedGoogle Scholar
  38. Widdel F, Bak F (1992) Gram-negative mesophilic sulfate-reducing bacteria. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer K-H (eds) The Prokaryotes. Springer- Verlag, Berlin, pp. 3352–3378CrossRefGoogle Scholar
  39. Yao C, Zhao S, Wang Y, Wang B, Wei M, Hu M (2013) Microbial desulfurization of waste latex rubber with Alicyclobacillus sp. Polym Degrad Stab 98:1724–1730. doi: 10.1016/j.polymdegradstab.2013.06.002 CrossRefGoogle Scholar
  40. Yikmis M, Steinbüchel A (2012) Historical and recent achievements in the field of microbial degradation of natural and synthetic rubber. Appl Environ Microbiol 78:4543–4551. doi: 10.1128/AEM.00001-12 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Earth and Environmental SciencesUniversity of Milano-BicoccaMilanoItaly
  2. 2.Pirelli Labs S.p.A.MilanoItaly
  3. 3.Department of Microbiology, Faculty of Biology SciencesUniversity of Shahid BeheshtiTehranIran

Personalised recommendations