Applied Microbiology and Biotechnology

, Volume 100, Issue 16, pp 6955–6969

Cell-targeting aptamers act as intracellular delivery vehicles

  • Subash C. B. Gopinath
  • Thangavel Lakshmipriya
  • Yeng Chen
  • M. K. Md Arshad
  • Jesinda P. Kerishnan
  • A. R. Ruslinda
  • Yarub Al-Douri
  • C. H. Voon
  • Uda Hashim
Mini-Review

Abstract

Aptamers are single-stranded nucleic acids or peptides identified from a randomized combinatorial library through specific interaction with the target of interest. Targets can be of any size, from small molecules to whole cells, attesting to the versatility of aptamers for binding a wide range of targets. Aptamers show drug properties that are analogous to antibodies, with high specificity and affinity to their target molecules. Aptamers can penetrate disease-causing microbial and mammalian cells. Generated aptamers that target surface biomarkers act as cell-targeting agents and intracellular delivery vehicles. Within this context, the “cell-internalizing aptamers” are widely investigated via the process of cell uptake with selective binding during in vivo systematic evolution of ligands by exponential enrichment (SELEX) or by cell-internalization SELEX, which targets cell surface antigens to be receptors. These internalizing aptamers are highly preferable for the localization and functional analyses of multiple targets. In this overview, we discuss the ways by which internalizing aptamers are generated and their successful applications. Furthermore, theranostic approaches featuring cell-internalized aptamers are discussed with the purpose of analyzing and diagnosing disease-causing pathogens.

Keywords

Aptamer Internalization SELEX Receptor Surface antigen 

References

  1. Adair JR, Howard PW, Hartley JA, Williams DG, Chester KA (2012) Antibody–drug conjugates—a perfect synergy. Expert Opin Biol Ther 12:1191–1206. doi:10.1517/14712598.2012.693473 PubMedCrossRefGoogle Scholar
  2. Adams GP, Weiner LM (2005) Monoclonal antibody therapy of cancer. Nat Biotechnol 23:1147–1157. doi:10.1038/nbt1137 PubMedCrossRefGoogle Scholar
  3. Ali ME, Hashim U, Mustafa S, Che Man YB, Islam KN (2012) Gold nanoparticle sensor for the visual detection of pork adulteration in meatball formulation. J Nanomater 1–7. doi:10.1155/2012/103607
  4. Ali ME, Hashim U, Mustafa S, Man YBC, Yusop MHM, Bari MF, Islam KN, Hasan MF (2011) Nanoparticle sensor for label free detection of swine DNA in mixed biological samples. Nanotechnology 22:195503. doi:10.1088/0957-4484/22/19/195503 PubMedCrossRefGoogle Scholar
  5. Ashrafuzzaman M (2014) Aptamers as both drugs and drug-carriers. Biomed Res Int 2014:1–21. doi:10.1155/2014/697923 CrossRefGoogle Scholar
  6. Azhdarzadeh M, Atyabi F, Saei AA, Varnamkhasti BS, Omidi Y, Fateh M, Ghavami M (2016) Shanehsazzadeh S, Dinarvand R. Theranostic MUC-1 aptamer targeted gold coated superparamagnetic iron oxide nanoparticles for magnetic resonance imaging and photothermal therapy of colon cancer. Colloids Surf B: Biointerfaces 143:224–232PubMedCrossRefGoogle Scholar
  7. Azmi AS, Bao B, Sarkar FH (2013) Exosomes in cancer development, metastasis, and drug resistance: a comprehensive review. Cancer Metastasis Rev 32:623–642. doi:10.1007/s10555-013-9441-9 PubMedCrossRefGoogle Scholar
  8. Blind M, Blank M (2015) Aptamer selection technology and recent advances. Mol Ther Acids 4:e223. doi:10.1038/mtna.2014.74 CrossRefGoogle Scholar
  9. Brown KC (2010) Peptidic tumor targeting agents: the road from phage display peptide selections to clinical applications. Curr Pharm Des 16:1040–1054PubMedPubMedCentralCrossRefGoogle Scholar
  10. Camorani S, Esposito CL, Rienzo A, Catuogno S, Iaboni M, Condorelli G, de Franciscis V, Cerchia L (2014) Inhibition of receptor signaling and of glioblastoma-derived tumor growth by a novel PDGFRβ aptamer. Mol Ther 22:828–841PubMedPubMedCentralGoogle Scholar
  11. Chang YM, Donovan MJ, Tan W (2013a) Using aptamers for cancer biomarker discovery. J Nucleic Acids 2013:817350. doi:10.1155/2013/817350 PubMedPubMedCentralCrossRefGoogle Scholar
  12. Chang YM, Donovan MJ, Tan W (2013b) Using aptamers for cancer biomarker discovery. J Nucleic Acids. doi:10.1155/2013/817350 PubMedPubMedCentralGoogle Scholar
  13. Chen HW, Medley CD, Sefah K, Shangguan D, Tang Z, Meng L, Smith JE, Tan W (2008) Molecular recognition of small-cell lung cancer cells using aptamers. ChemMedChem 3:991–1001. doi:10.1002/cmdc.200800030 PubMedPubMedCentralCrossRefGoogle Scholar
  14. Chen W, Zeng W, Sun J, Yang M, Li L, Zhou J, Wu Y, Sun J, Liu G, Tang R, Tan J, Zhu C (2015) Construction of an aptamer-siRNA chimera-modified tissue-engineered blood vessel for cell-type-specific capture and delivery. ACS Nano 23:6069–6076CrossRefGoogle Scholar
  15. Cheng C, Chen YH, Lennox KA, Behlke MA, Davidson BL (2013) In vivo SELEX for identification of brain-penetrating aptamers. Mol Ther Nucleic Acids 2:e67. doi:10.1038/mtna.2012.59 PubMedPubMedCentralCrossRefGoogle Scholar
  16. Cotter PD, Ross RP, Hill C (2013) Bacteriocins—a viable alternative to antibiotics? Nat Rev Microbiol 11:95–105. doi:10.1038/nrmicro2937 PubMedCrossRefGoogle Scholar
  17. Darmostuk M, Rimpelová S, Gbelcová H, Ruml T (2015) Current approaches in SELEX: an update to aptamer selection technology. Biotechnol Adv. doi:10.1016/j.biotechadv.2015.02.008 PubMedGoogle Scholar
  18. Dhar S, Gu FX, Langer R, Farokhzad OC, Lippard SJ (2008) Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt(IV) prodrug-PLGA-PEG nanoparticles. Proc Natl Acad Sci U S A 105:17356–17361. doi:10.1073/pnas.0809154105 PubMedPubMedCentralCrossRefGoogle Scholar
  19. Diao Y, Liu J, Ma Y, Su M, Zhang H, Hao X (2016) A specific aptamer-cell penetrating peptides complex delivered siRNA efficiently and suppressed prostate tumor growth in vivo. Cancer Biol TherGoogle Scholar
  20. Eaton BE, Gold L, Hicke BJ, Janjić N, Jucker FM, Sebesta DP, Tarasow TM, Willis MC, Zichi DA (1997) Post-SELEX combinatorial optimization of aptamers. Bioorg Med Chem 5:1087–1096. doi:10.1016/S0968-0896(97)00044-8 PubMedCrossRefGoogle Scholar
  21. Esposito CL, Catuogno S, de Franciscis V, Cerchia L (2011) New insight into clinical development of nucleic acid aptamers. Discov Med 11:487–496PubMedGoogle Scholar
  22. Farokhzad OC, Cheng J, Teply BA, Sherifi I, Jon S, Kantoff PW, Richie JP, Langer R (2006) Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc Natl Acad Sci U S A 103:6315–6320. doi:10.1073/pnas.0601755103 PubMedPubMedCentralCrossRefGoogle Scholar
  23. Farokhzad OC, Jon S, Khademhosseini A, Tran TNT, LaVan DA, Langer R (2004) Nanoparticle-aptamer bioconjugates: a new approach for targeting prostate cancer cells. Cancer Res 64:7668–7672. doi:10.1158/0008-5472.CAN-04-2550 PubMedCrossRefGoogle Scholar
  24. Firer MA, Gellerman G (2012) Targeted drug delivery for cancer therapy: the other side of antibodies. J Hematol Oncol 5:70. doi:10.1186/1756-8722-5-70 PubMedPubMedCentralCrossRefGoogle Scholar
  25. Gopinath SCB (2007a) Methods developed for SELEX. Anal Bioanal Chem 387:171–182. doi:10.1007/s00216-006-0826-2 PubMedCrossRefGoogle Scholar
  26. Gopinath SCB (2007b) Antiviral aptamers. Arch Virol 152:2137–2157. doi:10.1007/s00705-007-1014-1 PubMedCrossRefGoogle Scholar
  27. Gopinath SCB (2009) Mapping of RNA-protein interactions. Anal Chim Acta 636:117–128. doi:10.1016/j.aca.2009.01.052 PubMedCrossRefGoogle Scholar
  28. Gopinath SCB (2011) Aptamers. In: Meyers RA (ed) Encyclopedia of analytical chemistry. John Wiley, Chichester, pp. 1–27Google Scholar
  29. Gopinath SCB, Awazu K, Fujimaki M, Shimizu K, Shima T (2013) Observations of immuno-gold conjugates on influenza viruses using waveguide-mode sensors. PLoS One 8:1–10. doi:10.1371/journal.pone.0069121 CrossRefGoogle Scholar
  30. Gopinath SCB, Awazu K, Fujimaki M, Sugimoto K, Ohki Y, Komatsubara T, Tominaga J, Gupta KC, Kumar PKR (2008a) Influence of nanometric holes on the sensitivity of a waveguide-mode sensor: label-free nanosensor for the analysis of RNA aptamer-ligand interactions. Anal Chem 80:6602–6609. doi:10.1021/ac800767s PubMedCrossRefGoogle Scholar
  31. Gopinath SCB, Hayashi K, Kumar PKR (2012) Aptamer that binds to the gD protein of herpes simplex virus 1 and efficiently inhibits viral entry. J Virol 86:6732–6744. doi:10.1128/JVI.00377-12 PubMedPubMedCentralCrossRefGoogle Scholar
  32. Gopinath SCB, Kumar PKR (2013) Aptamers that bind to the hemagglutinin of the recent pandemic influenza virus H1N1 and efficiently inhibit agglutination. Acta Biomater 9:8932–8941. doi:10.1016/j.actbio.2013.06.016 PubMedCrossRefGoogle Scholar
  33. Gopinath SCB, Misono TS, Kawasaki K, Mizuno T, Imai M, Odagiri T, Kumar PKR (2006a) An RNA aptamer that distinguishes between closely related human influenza viruses and inhibits haemagglutinin-mediated membrane fusion. J Gen Virol 87:479–487. doi:10.1099/vir.0.81508-0 PubMedCrossRefGoogle Scholar
  34. Gopinath SCB, Misono TS, Kumar PKR (2008b) Prospects of ligand-induced aptamers. Crit Rev Anal Chem 38:34–47. doi:10.1080/10408340701804558 CrossRefGoogle Scholar
  35. Gopinath SCB, Sakamaki Y, Kawasaki K, Kumar PKR (2006b) An efficient RNA aptamer against human influenza B virus hemagglutinin. J Biochem 139:837–846. doi:10.1093/jb/mvj095 PubMedCrossRefGoogle Scholar
  36. Gopinath SCB, Wadhwa R, Kumar PKR (2010) Expression of noncoding vault RNA in human malignant cells and its importance in mitoxantrone resistance. Mol Cancer Res 8:1536–1546. doi:10.1158/1541-7786.MCR-10-0242 PubMedCrossRefGoogle Scholar
  37. Gourronc FA, Rockey WM, Thiel WH, Giangrande PH, Klingelhutz AJ (2013) Identification of RNA aptamers that internalize into HPV-16 E6/ E7 transformed tonsillar epithelial cells. Virology 446:325–333PubMedCrossRefGoogle Scholar
  38. Healy JM, Lewis SD, Kurz M, Boomer RM, Thompson KM, Wilson C, McCauley TG (2004) Pharmacokinetics and biodistribution of novel aptamer compositions. Pharm Res 21:2234–2246. doi:10.1007/s11095-004-7676-4 PubMedCrossRefGoogle Scholar
  39. Homann M, Göringer HU (1999) Combinatorial selection of high affinity RNA ligands to live African trypanosomes. Nucleic Acids Res 27:2006–2014. doi:10.1093/nar/27.9.2006 PubMedPubMedCentralCrossRefGoogle Scholar
  40. Hong Y, Lee E, Ku M, Suh JS, Yoon DS, Yang J (2016) Femto-molar detection of cancer marker-protein based on immuno-nanoplasmonics at single-nanoparticle scale. Nanotechnology 27:185103PubMedCrossRefGoogle Scholar
  41. Huang Y-F, Chang H-T, Tan W (2008) Cancer cell targeting using multiple aptamers conjugated on nanorods. Anal Chem 80:567–572. doi:10.1021/ac702322j PubMedCrossRefGoogle Scholar
  42. Hung L, Wang C-H, Che Y, Fu C, Chang H, Wang K, Lee G (2015) Screening of aptamers specific to colorectal cancer cells and stem cells by utilizing on-chip cell-SELEX. Sci Rep 5:10326. doi:10.1038/srep10326 PubMedPubMedCentralCrossRefGoogle Scholar
  43. Jack R, Tagg J, Ray B (1995) Bacteriocins of gram-positive bacteria. Microbiol Rev 59:171–200PubMedPubMedCentralGoogle Scholar
  44. Jhaveri S, Rajendran M, Ellington AD (2000) In vitro selection of signaling aptamers. Nat Biotechnol 18:1293–1297. doi:10.1038/82414 PubMedCrossRefGoogle Scholar
  45. Juliano RL, Ling V (1976) A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim Biophys Acta Biomembr 455:152–162. doi:10.1016/0005-2736(76)90160-7 CrossRefGoogle Scholar
  46. Kadioglu O, Malczyk AH, Greten HJ, Efferth T (2015) Aptamers as a novel tool for diagnostics and therapy. Investig New Drugs. doi:10.1007/s10637-015-0213-y Google Scholar
  47. Kato Y, Minakawa N, Komatsu Y, Kamiya H, Ogawa N, Harashima H, Matsuda A (2005) New NTP analogs: the synthesis of 4′-thioUTP and 4′-thioCTP and their utility for SELEX. Nucleic Acids Res 33:2942–2951. doi:10.1093/nar/gki578 PubMedPubMedCentralCrossRefGoogle Scholar
  48. Kelkar SS, Reineke TM (2011) Theranostics: combining imaging and therapy. Bioconjug Chem 22:1879–1903PubMedCrossRefGoogle Scholar
  49. Kim S, Lee J, Lee SJ, Lee HJ (2010a) Ultra-sensitive detection of IgE using biofunctionalized nanoparticle-enhanced SPR. Talanta 81:1755–1759. doi:10.1016/j.talanta.2010.03.036 PubMedCrossRefGoogle Scholar
  50. Kim D, Jeong YY, Jon S (2010b) A drug-loaded aptamer−gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer. ACS Nano 4:3689–3696. doi:10.1021/nn901877h PubMedCrossRefGoogle Scholar
  51. Kim JW, Kim EY, Kim SY, Byun SK, Lee D, Kim WK, Han BS, Chi S, Lee SC, Bae K (2014) Identification of DNA aptamers toward epithelial cell adhesion molecule via cell-SELEXGoogle Scholar
  52. King HW, Michael MZ, Gleadle JM (2012) Hypoxic enhancement of exosome release by breast cancer cells. BMC Cancer 12:421. doi:10.1186/1471-2407-12-421 PubMedPubMedCentralCrossRefGoogle Scholar
  53. Kitazono M, Sumizawa T, Takebayashi Y, Chen Z-S, Furukawa T, Nagayama S, Tani A, Takao S, Aikou T, Akiyama S (1999) Multidrug resistance and the lung resistance-related protein in human colon carcinoma SW-620 cells. J Natl Cancer Inst 91:1647–1653. doi:10.1093/jnci/91.19.1647 PubMedCrossRefGoogle Scholar
  54. Lakshmipriya T, Fujimaki M, Gopinath SCB, Awazu K (2013) Generation of anti-influenza aptamers using the systematic evolution of ligands by exponential enrichment for sensing applications. Langmuir 29:15107–15115. doi:10.1021/la4027283 PubMedCrossRefGoogle Scholar
  55. Leach JC, Wang A, Ye K, Jin S (2016) A RNA-DNA hybrid aptamer for nanoparticle-based prostate tumor targeted drug delivery. Int J Mol Sci. doi:10.3390/ijms17030380 PubMedPubMedCentralGoogle Scholar
  56. Levy-Nissenbaum E, Radovic-Moreno AF, Wang AZ, Langer R, Farokhzad OC (2008) Nanotechnology and aptamers: applications in drug delivery. Trends Biotechnol 26:442–449. doi:10.1016/j.tibtech.2008.04.006 PubMedCrossRefGoogle Scholar
  57. Li L, Hou J, Liu X, Guo Y, Wu Y, Zhang L, Yang Z (2014a) Nucleolin-targeting liposomes guided by aptamer AS1411 for the delivery of siRNA for the treatment of malignant melanomas. Biomaterials 35:3840–3850PubMedCrossRefGoogle Scholar
  58. Li WM, Bing T, Wei JY, Chen ZZ, Shangguan DH, Fang J (2014b) Cell-SELEX-based selection of aptamers that recognize distinct targets on metastatic colorectal cancer cells. Biomaterials 35:6998–7007. doi:10.1016/j.biomaterials.2014.04.112 PubMedCrossRefGoogle Scholar
  59. Lindgren M, Hällbrink M, Prochiantz A, Langel U (2000) Cell-penetrating peptides. Trends Pharmacol Sci 21:99–103. doi:10.1016/S0165-6147(00)01447-4 PubMedCrossRefGoogle Scholar
  60. Liu J, Wei T, Zhao J, Huang Y, Deng H, Kumar A, Wang C, Liang Z, Ma X, Liang XJ (2016) Multifunctional aptamer-based nanoparticles for targeted drug delivery to circumvent cancer resistance. Biomaterials 91:44–56PubMedCrossRefGoogle Scholar
  61. Mallikaratchy P, Tang Z, Kwame S, Meng L, Shangguan D, Tan W (2007) Aptamer directly evolved from live cells recognizes membrane bound immunoglobin heavy mu chain in Burkitt’s lymphoma cells. Mol Cell Proteomics 6:2230–2238. doi:10.1074/mcp.M700026-MCP200 PubMedCrossRefGoogle Scholar
  62. Mathivanan S, Ji H, Simpson RJ (2010) Exosomes: extracellular organelles important in intercellular communication. J Proteome 73:1907–1920. doi:10.1016/j.jprot.2010.06.006 CrossRefGoogle Scholar
  63. Mi J, Liu Y, Rabbani ZN, Yang Z, Urban JH, Sullenger BA, Clary BM (2010) In vivo selection of tumor-targeting RNA motifs. Nat Chem Biol 6:22–24. doi:10.1038/nchembio.277 PubMedCrossRefGoogle Scholar
  64. Mori T, Oguro A, Ohtsu T, Nakamura Y (2004) RNA aptamers selected against the receptor activator of NF-κB acquire general affinity to proteins of the tumor necrosis factor receptor family. Nucleic Acids Res 32:6120–6128. doi:10.1093/nar/gkh949 PubMedPubMedCentralCrossRefGoogle Scholar
  65. Navarre WW, Schneewind O (1999) Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol Mol Biol Rev 63:174–229PubMedPubMedCentralGoogle Scholar
  66. Nutiu R, Li Y (2003) Structure-switching signaling aptamers. J Am Chem Soc 125:4771–4778. doi:10.1021/ja028962o PubMedCrossRefGoogle Scholar
  67. Orava EW, Cicmil N, Gariépy J (2010) Delivering cargoes into cancer cells using DNA aptamers targeting internalized surface portals. Biochim Biophys Acta Biomembr 1798:2190–2200. doi:10.1016/j.bbamem.2010.02.004 CrossRefGoogle Scholar
  68. Peng CG, Damha MJ (2007) G-quadruplex induced stabilization by 2'-deoxy-2' -fluoro-d-arabinonucleic acids (2'F-ANA). Nucleic Acids Res 35:4977–4988. doi:10.1093/nar/gkm520 PubMedPubMedCentralCrossRefGoogle Scholar
  69. Perera RM, Zoncu R, Johns TG, Pypaert M, Lee F-T, Mellman I, Old LJ, Toomre DK, Scott AM (2007) Internalization, intracellular trafficking, and biodistribution of monoclonal antibody 806: a novel anti-epidermal growth factor receptor antibody. Neoplasia 9:1099–1110. doi:10.1593/neo.07721 PubMedPubMedCentralCrossRefGoogle Scholar
  70. Qazi KR, Torregrosa Paredes P, Dahlberg B, Grunewald J, Eklund A, Gabrielsson S (2010) Proinflammatory exosomes in bronchoalveolar lavage fluid of patients with sarcoidosis. Thorax 65:1016–1024. doi:10.1136/thx.2009.132027 PubMedCrossRefGoogle Scholar
  71. Que-Gewirth NS, Sullenger BA (2007) Gene therapy progress and prospects: RNA aptamers. Gene Ther 14:283–291. doi:10.1038/sj.gt.3302900 PubMedCrossRefGoogle Scholar
  72. Rajendran M, Ellington AD (2003) In vitro selection of molecular beacons. Nucleic Acids Res 31:5700–5713. doi:10.1093/nar/gkg764 PubMedPubMedCentralCrossRefGoogle Scholar
  73. Regnier V, De Morre N, Jadoul A, Préat V (1999) Mechanisms of a phosphorothioate oligonucleotide delivery by skin electroporation. Int J Pharm 184:147–156PubMedCrossRefGoogle Scholar
  74. Reyes-Reyes EM, Šalipur FR, Shams M, Forsthoefel MK, Bates PJ (2015) Mechanistic studies of anticancer aptamer AS1411 reveal a novel role for nucleolin in regulating Rac1 activation. Mol Oncol 9:1392–1405PubMedCrossRefGoogle Scholar
  75. Rohde JH, Weigand JE, Suess B, Dimmeler S (2015) A universal aptamer chimera for the delivery of functional microRNA-126. Nucleic Acid Ther 25:141–151PubMedCrossRefGoogle Scholar
  76. Rosenberg JE, Bambury RM, Van Allen EM, Drabkin HA, Lara PN Jr, Harzstark AL, Wagle N, Figlin RA, Smith GW, Garraway LA, Choueiri T, Erlandsson F, Laber DA (2014) A phase II trial of AS1411 (a novel nucleolin-targeted DNA aptamer) in metastatic renal cell carcinoma. Investig New Drugs 32:178–187CrossRefGoogle Scholar
  77. Rusconi CP, Scardino E, Layzer J, Pitoc GA, Ortel TL, Monroe D, Sullenger BA (2002) RNA aptamers as reversible antagonists of coagulation factor IXa. Nature 419:90–94. doi:10.1038/nature00963 PubMedCrossRefGoogle Scholar
  78. Sánchez-Luque FJ, Stich M, Manrubia S, Briones C, Berzal-Herranz A (2014) Efficient HIV-1 inhibition by a 16 nt-long RNA aptamer designed by combining in vitro selection and in silico optimisation strategies. Sci Rep 4:6242. doi:10.1038/srep06242 PubMedPubMedCentralCrossRefGoogle Scholar
  79. Scheffer GL, Schroeijers AB, Izquierdo MA, Wiemer EAC, Scheper RJ (2000) Lung resistance-related protein/major vault protein and vaults in multidrug-resistant cancerGoogle Scholar
  80. Schorey JS, Bhatnagar S (2008) Exosome function: from tumor immunology to pathogen biology. Traffic 9:871–881. doi:10.1111/j.1600-0854.2008.00734.x PubMedPubMedCentralCrossRefGoogle Scholar
  81. Sefah K, Meng L, Lopez-Colon D, Jimenez E, Liu C, Tan W (2010) DNA aptamers as molecular probes for colorectal cancer study. PLoS One 5:e14269. doi:10.1371/journal.pone.0014269 PubMedPubMedCentralCrossRefGoogle Scholar
  82. Sefah K, Tang ZW, Shangguan DH, Chen H, Lopez-Colon D, Li Y, Parekh P, Martin J, Meng L, Phillips JA, Kim YM, Tan WH (2009) Molecular recognition of acute myeloid leukemia using aptamers. Leuk Off J Leuk Soc Am Leuk Res Fund UK 23:235–244. doi:10.1038/leu.2008.335 CrossRefGoogle Scholar
  83. Shangguan D, Li Y, Tang Z, Cao ZC, Chen HW, Mallikaratchy P, Sefah K, Yang CJ, Tan W (2006) Aptamers evolved from live cells as effective molecular probes for cancer study. Proc Natl Acad Sci U S A 103:11838–11843. doi:10.1073/pnas.0602615103 PubMedPubMedCentralCrossRefGoogle Scholar
  84. Shangguan D, Meng L, Cao ZC, Xiao Z, Fang X, Li Y, Cardona D, Witek RP, Liu C, Tan W (2008) Identification of liver cancer-specific aptamers using whole live cells. Anal Chem 80:721–728. doi:10.1021/ac701962v PubMedCrossRefGoogle Scholar
  85. Shiao Y-S, Chiu H-H, Wu P-H, Huang Y-F (2014) Aptamer-functionalized gold nanoparticles as photoresponsive nanoplatform for co-drug delivery. ACS Appl Mater Interfaces 6:21832–21841. doi:10.1021/am5026243 PubMedCrossRefGoogle Scholar
  86. Shum K-T, Zhou J, Rossi JJ (2013) Nucleic acid aptamers as potential therapeutic and diagnostic agents for lymphoma. J Cancer Ther 4:872–890. doi:10.4236/jct.2013.44099 PubMedPubMedCentralCrossRefGoogle Scholar
  87. Skog J, Würdinger T, van Rijn S, Meijer DH, Gainche L, Curry WT, Carter BS, Krichevsky AM, Breakefield XO (2008) Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10:1470–1476. doi:10.1038/ncb1800 PubMedPubMedCentralCrossRefGoogle Scholar
  88. Soundararajan S, Chen W, Spicer EK, Courtenay-Luck N, Fernandes DJ (2008) The nucleolin targeting aptamer AS1411 destabilizes Bcl-2 messenger RNA in human breast cancer cells. Cancer Res 68:2358–2365. doi:10.1158/0008-5472.CAN-07-5723 PubMedCrossRefGoogle Scholar
  89. Srivastava M, Srivastava M, Pollard HB, Pollard HB (1999) Molecular dissection of nucleolin’s role in growth and cell proliferation: new insights. FASEB J 13:1911–1922PubMedGoogle Scholar
  90. Stasi R (2008) Gemtuzumab ozogamicin: an anti-CD33 immunoconjugate for the treatment of acute myeloid leukaemia. Expert Opin Biol Ther 8:527–540. doi:10.1517/14712598.8.4.527 PubMedCrossRefGoogle Scholar
  91. Subramanian N, Kanwar JR, Kumar AP, Janakiraman N, Khetan V, Kanwar RK, Eluchuri S, Krishnakumar S (2015) EpCAM aptamer mediated cancer cell specific delivery of EpCAM siRNA using polymeric nanocomplex. J Biomed Sci 22:4. doi:10.1186/s12929-014-0108-9 PubMedPubMedCentralCrossRefGoogle Scholar
  92. Sudimack J, Lee RJ (2000) Targeted drug delivery via the folate receptor. Adv Drug Deliv Rev 41:147–162. doi:10.1016/S0169-409X(99)00062-9 PubMedCrossRefGoogle Scholar
  93. Taghdisi SM, Abnous K, Mosaffa F, Behravan J (2010) Targeted delivery of daunorubicin to T-cell acute lymphoblastic leukemia by aptamer. J Drug Target 18:277–281. doi:10.3109/10611860903434050 PubMedCrossRefGoogle Scholar
  94. Tan A, de la Peña H, Seifalian AM (2010) The application of exosomes as a nanoscale cancer vaccine. Int J Nanomedicine 5:889–900. doi:10.2147/IJN.S13402 PubMedPubMedCentralGoogle Scholar
  95. Tang Z, Shangguan D, Wang K, Shi H, Sefah K, Mallikratchy P, Chen HW, Li Y, Tan W (2007) Selection of aptamers for molecular recognition and characterization of cancer cells. Anal Chem 79:4900–4907. doi:10.1021/ac070189y PubMedCrossRefGoogle Scholar
  96. Tayyari F, Marchant D, Moraes TJ, Duan W, Mastrangelo P, Hegele RG (2011) Identification of nucleolin as a cellular receptor for human respiratory syncytial virus. Nat Med 17:1132–1135. doi:10.1038/nm.2444 PubMedCrossRefGoogle Scholar
  97. Thiel WH, Bair T, Peek AS, Liu X, Dassie J, Stockdale KR, Behlke MA, Miller FJ Jr, Giangrande PH (2012) Rapid identification of cell-specific, internalizing RNA aptamers with bioinformatics analyses of a cell-based aptamer selection. PLoS One 7:e43836PubMedPubMedCentralCrossRefGoogle Scholar
  98. Tucker WO, Shum KT, Tanner JA (2012) G-quadruplex DNA aptamers and their ligands: structure, function and application. Curr Pharm Des 18:2014–2026PubMedCrossRefGoogle Scholar
  99. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510. doi:10.1126/science.2200121 PubMedCrossRefGoogle Scholar
  100. Van Simaeys D, López-Colón D, Sefah K, Sutphen R, Jimenez E, Tan W (2010) Study of the molecular recognition of aptamers selected through ovarian cancer cell-SELEX. PLoS One 5:e13770. doi:10.1371/journal.pone.0013770 PubMedPubMedCentralCrossRefGoogle Scholar
  101. Wang T, Gantier MP, Xiang D, Bean AG, Bruce M, Zhou SF, Khasraw M, Ward A, Wang L, Wei MQ, AlShamaileh H, Chen L, She X, Lin J, Kong L, Shigdar S, Duan W (2015) EpCAM aptamer-mediated survivin silencing sensitized cancer stem cells to doxorubicin in a breast cancer model. Theranostics 20:1456–1472CrossRefGoogle Scholar
  102. Willis MC, Collins B, Zhang T, Green LS, Sebesta DP, Bell C, Kellogg E, Gill SC, Magallanez A, Knauer S, Bendele RA, Gill PS, Janjic N (1998) Liposome anchored vascular endothelial growth factor aptamers. Bioconjug Chem 9:573–582. doi:10.1021/bc980002x PubMedCrossRefGoogle Scholar
  103. Wu J, Zhu Y, Xue F, Mei Z, Yao L, Wang X, Zheng L, Liu J, Liu G, Peng C, Chen W (2014) Recent trends in SELEX technique and its application to food safety monitoring. Mikrochim Acta 181:479–491. doi:10.1007/s00604-013-1156-7 PubMedPubMedCentralCrossRefGoogle Scholar
  104. Xiao Z, Levy-Nissenbaum E, Alexis F, Lupták A, Teply BA, Chan JM, Shi J, Digga E, Cheng J, Langer R, Farokhzad OC (2012) Engineering of targeted nanoparticles for cancer therapy using internalizing aptamers isolated by cell-uptake selection. ACS Nano 6:696–704. doi:10.1021/nn204165v PubMedPubMedCentralCrossRefGoogle Scholar
  105. Xiao Z, Shangguan D, Cao Z, Fang X, Tan W (2008) Cell-specific internalization study of an aptamer from whole cell selection. Chem Eur J 14:1769–1775. doi:10.1002/chem.200701330 PubMedCrossRefGoogle Scholar
  106. Yamamoto-Fujita R, Kumar PKR (2005) Aptamer-derived nucleic acid Oligos: applications to develop nucleic acid chips to analyze proteins and small ligands. Anal Chem 77:5460–5466. doi:10.1021/ac050364f PubMedCrossRefGoogle Scholar
  107. Yan Q (2014) Pharmacogenomics in drug discovery and development. Methods Mol Biol 1175:v–viiPubMedGoogle Scholar
  108. Yu C, Hu Y, Duan J, Yuan W, Wang C, Xu H, Yang XDA (2011) Novel aptamer-nanoparticle bioconjugates enhances delivery of anticancer drug to MUC1-positive cancer cells in vitro. PLoS One 6:1–8. doi:10.1371/journal.pone.0024077 Google Scholar
  109. Zhang K, Sefah K, Tang L, Zhao Z, Zhu G, Ye M, Sun W, Goodison S, Tan W (2012) A novel aptamer developed for breast cancer cell internalization. ChemMedChem 7:79–84. doi:10.1002/cmdc.201100457 PubMedCrossRefGoogle Scholar
  110. Zhao Z, Xu L, Shi X, Tan W, Fang X, Shangguan D (2009) Recognition of subtype non-small cell lung cancer by DNA aptamers selected from living cells. Analyst 134:1808–1814. doi:10.1039/B904476K PubMedCrossRefGoogle Scholar
  111. Zhou J, Bobbin ML, Burnett JC, Rossi JJ (2012) Current progress of RNA aptamer-based therapeutics. Front Genet 3:1–14CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Subash C. B. Gopinath
    • 1
    • 2
  • Thangavel Lakshmipriya
    • 1
  • Yeng Chen
    • 3
    • 4
  • M. K. Md Arshad
    • 1
  • Jesinda P. Kerishnan
    • 3
  • A. R. Ruslinda
    • 1
  • Yarub Al-Douri
    • 1
    • 5
  • C. H. Voon
    • 1
  • Uda Hashim
    • 1
  1. 1.Institute of Nano Electronic EngineeringUniversiti Malaysia PerlisKangarMalaysia
  2. 2.School of Bioprocess EngineeringUniversiti Malaysia PerlisArauMalaysia
  3. 3.Department of Oral Biology and Biomedical Sciences, Faculty of DentistryUniversity of MalayaKuala LumpurMalaysia
  4. 4.Oral Cancer Research and Coordinating Center, Faculty of DentistryUniversity of MalayaKuala LumpurMalaysia
  5. 5.Physics Department, Faculty of ScienceUniversity of Sidi-Bel-AbbesSidi-Bel-AbbesAlgeria

Personalised recommendations