Applied Microbiology and Biotechnology

, Volume 100, Issue 14, pp 6193–6208 | Cite as

Kluyveromyces marxianus as a host for heterologous protein synthesis

  • Andreas K. Gombert
  • José Valdo MadeiraJr.
  • María-Esperanza Cerdán
  • María-Isabel González-SisoEmail author


The preferentially respiring and thermotolerant yeast Kluyveromyces marxianus is an emerging host for heterologous protein synthesis, surpassing the traditional preferentially fermenting yeast Saccharomyces cerevisiae in some important aspects: K . marxianus can grow at temperatures 10 °C higher than S. cerevisiae, which may result in decreased costs for cooling bioreactors and reduced contamination risk; has ability to metabolize a wider variety of sugars, such as lactose and xylose; is the fastest growing eukaryote described so far; and does not require special cultivation techniques (such as fed-batch) to avoid fermentative metabolism. All these advantages exist together with a high secretory capacity, performance of eukaryotic post-translational modifications, and with a generally regarded as safe (GRAS) status. In the last years, replication origins from several Kluyveromyces spp. have been used for the construction of episomal vectors, and also integrative strategies have been developed based on the tendency for non-homologous recombination displayed by K. marxianus. The recessive URA3 auxotrophic marker and the dominant KanR are mostly used for selection of transformed cells, but other markers have been made available. Homologous and heterologous promoters and secretion signals have been characterized, with the K. marxianus INU1 expression and secretion system being of remarkable functionality. The efficient synthesis of roughly 50 heterologous proteins has been demonstrated, including one thermophilic enzyme. In this mini-review, we summarize the physiological characteristics of K. marxianus relevant for its use in the efficient synthesis of heterologous proteins, the efforts performed hitherto in the development of a molecular toolbox for this purpose, and some successful examples.


Kluyveromyces marxianus Thermotolerant yeast Cell factory Heterologous protein synthesis Heterologous protein secretion Eukaryotic post-translational modifications 



General support to the group EXPRELA was funded by Xunta de Galicia (Consolidación D.O.G. 10-10-2012. Contract Number: 2012/118) co-financed by FEDER. We also acknowledge support from Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), São Paulo, Brazil, through grant number 2015/14109-0. JVM-Jr. acknowledges a PNPD scholarship from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Brasília, Brazil.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This article does not contain studies with human participants or animals performed by any of the authors.


  1. Ballesteros M, Oliva JM, Negro MJ, Manzanares P, Ballesteros I (2004) Ethanol from lignocellulosic materials by a simultaneous saccharification and fermentation process (SFS) with Kluyveromyces marxianus CECT 10875. Process Biochem 39(12):1843–1848. doi: 10.1016/j.procbio.2003.09.011 CrossRefGoogle Scholar
  2. Belem MAF, Lee BH (1998) Production of bioingredients from Kluyveromyces marxianus grown on whey: an alternative. Crit Rev Food Sci Nutr 38:565–598. doi: 10.1080/10408699891274318 CrossRefPubMedGoogle Scholar
  3. Bellaver LH, de Carvalho NM, Abrahão-Neto J, Gombert AK (2004) Ethanol formation and enzyme activities around glucose-6-phosphate in Kluyveromyces marxianus CBS 6556 exposed to glucose or lactose excess. FEMS Yeast Res 4:691–698. doi: 10.1016/j.femsyr.2004.01.004 CrossRefPubMedGoogle Scholar
  4. Bergkamp RJM, Bootsman TC, Toschka HY, Mooren ATA, Kox L, Verbakel JMA, Geerse RH, Planta RJ (1993) Expression of an alpha-galactosidase gene under control of the homologous inulinase promoter in Kluyveromyces marxianus. Appl Microbiol Biotechnol 40:309–317. doi: 10.1007/BF00170386 CrossRefPubMedGoogle Scholar
  5. Bragança CRS, Colombo LT, Roberti AS, Alvim MCT, Cardoso SA, Reis KCP, de Paula SO, da Silveira WB, Passos FML (2015) Construction of recombinant Kluyveromyces marxianus UFV-3 to express dengue virus type 1 nonstructural protein 1 (NS1). Appl Microbiol Biotechnol 99:1191–1203. doi: 10.1007/s00253-014-5963-5 CrossRefPubMedGoogle Scholar
  6. Bruijne AW, Schuddemat J, van den Broek PJA, van Steveninck J (1988) Regulation of sugar transport systems of Kluyveromyces marxianus: the role of carbohydrates and their catabolism. Biochim Biophys Acta 939:569–576. doi: 10.1016/0005-2736(88)90104-6 CrossRefPubMedGoogle Scholar
  7. Buckholz RG, Gleeson MAG (1991) Yeast systems for the commercial production of heterologous proteins. Bio/Technology 9:1067–1072. doi: 10.1038/nbt1191-1067 CrossRefPubMedGoogle Scholar
  8. Castro RCA, Roberto IC (2014) Selection of a thermotolerant Kluyveromyces marxianus strain with potential application for cellulosic ethanol production by simultaneous saccharification and fermentation. Appl Biochem Biotechnol 172:1553–1564. doi: 10.1007/s12010-013-0612-5 CrossRefPubMedGoogle Scholar
  9. Chang JJ, Ho CY, Ho FJ, Tsai TY, Ke HM, Wang CHT, Chen HL, Shih MC, Huang CC, Li WH (2012) PGASO: a synthetic biology tool for engineering a cellulolytic yeast. Biotechnol Biofuels 5:53. doi: 10.1186/1754-6834-5-53 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Chang JJ, Ho F, Ho C, Wu Y, Hou Y, Huang C, Shih M, Li W (2013) Assembling a cellulase cocktail and a cellodextrin transporter into a yeast host for CBP ethanol production. Biotechnol Biofuels 6:19. doi: 10.1186/1754-6834-6-19 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Cheon Y, Kim JS, Park JB, Heo P, Lim JH, Jung GY, Seo JH, Park JH, Koo HM, Cho KM, Park JB, Ha SJ, Kweon DH (2014) A biosynthetic pathway for hexanoic acid production in Kluyveromyces marxianus. J Biotechnol 182-183:30–36. doi: 10.1016/j.jbiotec.2014.04.010 CrossRefPubMedGoogle Scholar
  12. Chen XJ (1996) Low- and high-copy-number shuttle vectors for replication in the budding yeast Kluyveromyces lactis. Gene 172:131–136. doi: 10.1016/0378-1119(96)00125-4 CrossRefPubMedGoogle Scholar
  13. Choo JH, Han C, Kim JY, Kang HA (2014) Deletion of a KU80 homolog enhances homologous recombination in the thermotolerant yeast Kluyveromyces marxianus. Biotechnol Lett 36:2059–2067. doi: 10.1007/s10529-014-1576-4 CrossRefPubMedGoogle Scholar
  14. De Deken RH (1966) The Crabtree effect: a regulatory system in yeast. Microbiology 44:149–156Google Scholar
  15. Delic M, Valli M, Graf AB, Pfeffer M, Mattanovich D, Gasser B (2013) The secretory pathway: exploring yeast diversity. FEMS Microbiol Rev 37:872–914CrossRefPubMedGoogle Scholar
  16. Della-Bianca BE, Basso TO, Stambuk BU, Basso LC, Gombert AK (2013) What do we know about the yeast strains from the Brazilian fuel ethanol industry? Appl Microbiol Biotechnol 97:979–991. doi: 10.1007/s00253-012-4631-x CrossRefPubMedGoogle Scholar
  17. Diniz RHS, Silveira WB, Fietto LG, Passos FML (2012) The high fermentative metabolism of Kluyveromyces marxianus UFV-3 relies on the increased expression of key lactose metabolic enzymes. Antonie Van Leeuwenhoek 101:541–550. doi: 10.1007/s10482-011-9668-9 CrossRefPubMedGoogle Scholar
  18. Dolashka-Angelova P, Moshtanska V, Kujumdzieva A, Atanasov B, Petrova V, Voelter W, Van Beeumen J (2010) Structure of glycosylated Cu/Zn-superoxide dismutase from Kluyveromyces yeast NBIMCC 1984. J Mol Struct 980:18–23CrossRefGoogle Scholar
  19. Domínguez A, Fermiñán E, Sánchez M, González FJ, Pérez-Campo FM, García S, Herrero AB, Vicente AS, Cabello J, Prado M, Iglesias FJ, Choupina A, Burguillo FJ, Fernández-Lago L, López MC (1998) Non-conventional yeasts as hosts for heterologous protein production. Int Microbiol 1:131–142. doi: 10.1007/s00253-014-5948-4 PubMedGoogle Scholar
  20. Fonseca GG, de Carvalho NM, Gombert AK (2013) Growth of the yeast Kluyveromyces marxianus CBS 6556 on different sugar combinations as sole carbon and energy source. Appl Microbiol Biotechnol 97:5055–5067. doi: 10.1007/s00253-013-4748-6 CrossRefPubMedGoogle Scholar
  21. Fonseca GG, Heinzle E, Wittmann C, Gombert AK (2008) The yeast Kluyveromyces marxianus and its biotechnological potential. Appl Microbiol Biotechnol 79:339–354. doi: 10.1007/s00253-008-1458-6 CrossRefPubMedGoogle Scholar
  22. Fuciños P, Atanes E, López-López O, Cerdán ME, González-Siso MI, Pastrana L, Rúa ML (2011) Production and characterization of two N-terminal truncated esterases from Thermus thermophilus HB27 in a mesophilic yeast: effect of N-terminus in thermal activity and stability. Protein Expr Purif 78:120–130. doi: 10.1016/j.pep.2011.04.002 CrossRefPubMedGoogle Scholar
  23. Gancedo JM (1998) Yeast carbon catabolite repression. Microbiol Mol Biol Rev 62:334–361. doi: 10.1111/j.1432-1033.1992.tb16928.x PubMedPubMedCentralGoogle Scholar
  24. Gao Y, Xu J, Yuan Z, Zhang Y, Liang C, Liu Y (2014) Ethanol production from high solids loading of alkali-pretreated sugarcane bagasse with an SSF process. Bioresources 9:3466–3479. doi: 10.15376/biores.9.2.3466-3479 Google Scholar
  25. Gasnier B (1987) Characterization of low- and high-affinity glucose transports in the yeast Kluyveromyces marxianus. Biochim Biophys Acta 903:425–433. doi: 10.1016/0005-2736(87)90049-6 CrossRefPubMedGoogle Scholar
  26. Gemmill TR, Trimble RB (1999) Overview of N- and O-linked oligosaccharide structures found in various yeast species. Biochim Biophys Acta 1426:227–237. doi: 10.1016/S0304-4165(98)00126-3 CrossRefPubMedGoogle Scholar
  27. González-Siso MI, Ramil E, Cerdán ME, Freire-Picos MA (1996) Respirofermentative metabolism in Kluyveromyces lactis: ethanol production and Crabtree effect. Enzym Microb Technol 18(8):585–591. doi: 10.1016/0141-0229(95)00151-4 CrossRefGoogle Scholar
  28. Goshima T, Negi K, Tsuji M, Inoue H, Yano S, Hoshino T, Matsushika A (2013a) Ethanol fermentation from xylose by metabolically engineered strains of Kluyveromyces marxianus. J Biosci Bioeng 116:551–554. doi: 10.1016/j.jbiosc.2013.05.010 CrossRefPubMedGoogle Scholar
  29. Goshima T, Tsuji M, Inoue H, Yano S, Hoshino T, Matsushika A (2013b) Bioethanol production from lignocellulosic biomass by a novel Kluyveromyces marxianus strain. Biosci Biotechnol Biochem 77:1505–1010CrossRefPubMedGoogle Scholar
  30. Groeneveld P, Stouthamer AH, Westerhoff HV (2009) Super life—how and why ‘cell selection’ leads to the fastest-growing eukaryote. FEBS J 276:254–270. doi: 10.1111/j.1742-4658.2008.06778.x CrossRefPubMedGoogle Scholar
  31. Hagman A, Säll T, Compagno C, Piskur J (2013) Yeast “Make-Accumulate-Consume” life strategy evolved as a multi-step process that predates the whole genome duplication. PLoS One 8(7):e68734. doi: 10.1371/journal.pone.0068734 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Hensing MC, Rouwenhorst RJ, Heijnen JJ, van Dijken JP, Pronk JT (1995) Physiological and technological aspects of large-scale heterologous-protein production with yeasts. Antonie Van Leeuwenhoek 67:261–279. doi: 10.1007/BF00873690 CrossRefPubMedGoogle Scholar
  33. Herrera T, Ulloa M, Fuentes I (1973) Descripción de una especie nueva de Hansenula y una variedad nueva de Candida parapsilosis aisladas del pozol. Bol Soc Mex Micol 7:17–26Google Scholar
  34. Hong J, Wang Y, Kumagai H, Tamaki H (2007) Construction of thermotolerant yeast expressing thermostable cellulase genes. J Biotechnol 130:114–123. doi: 10.1016/j.jbiotec.2007.03.008 CrossRefPubMedGoogle Scholar
  35. Hoshida H, Murakami N, Suzuki A, Tamura R, Asakawa J, Abdel-Banat BMA, Nonklang S, Nakamura M, Akada R (2014) Non-homologous end joining-mediated functional marker selection for DNA cloning in the yeast Kluyveromyces marxianus. Yeast 31:29–46. doi: 10.1002/yea.2993 CrossRefPubMedGoogle Scholar
  36. Inokuma K, Ishii J, Hara KY, Mochizuki M, Hasunuma T, Kondo A (2015) Complete genome sequence of Kluyveromyces marxianus strain NBRC1777, a nonconventional thermotolerant yeast. Genome Announc 3(2):e00389–e00315. doi: 10.1128/genomeA.00389-15 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Jakočiunas T, Jensen MK, Keasling JD (2016) CRISPR/Cas9 advances engineering of microbial cell factories. Metab Eng 34:44–59. doi: 10.1016/j.ymben.2015.12.003 CrossRefPubMedGoogle Scholar
  38. Jeong H, Lee DH, Kim SH, Kim HJ, Lee K, Song JY, Kim BK, Sung BH, Park JC, Sohn JH, Koo HM, Kim JF (2012) Genome sequence of the thermotolerant yeast Kluyveromyces marxianus var. marxianus KCTC 17555. Eukaryot Cell 11:1584–1585. doi: 10.1128/EC.00260-12 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Kádár Z, Szengyel Z, Réczey K (2004) Simultaneous saccharification and fermentation (SSF) of industrial wastes for the production of ethanol. Ind Crop Prod 20:103–110. doi: 10.1016/j.indcrop.2003.12.015 CrossRefGoogle Scholar
  40. Kim TY, Lee SW, Oh MK (2014) Biosynthesis of 2-phenylethanol from glucose with genetically engineered Kluyveromyces marxianus. Enzym Microb Technol 61-62:44–47. doi: 10.1016/j/enzmictec.2014.04.011 CrossRefGoogle Scholar
  41. Kooistra R, Hooykaas PJJ, Steensma HY (2004) Efficient gene targeting in Kluyveromyces lactis. Yeast 21:81–792. doi: 10.1002/yea.1131 CrossRefGoogle Scholar
  42. Kurtzman CP (2003) Phylogenetic circumscription of Saccharomyces, Kluyveromyces and other members of the Saccharomycetaceae, and the proposal of the new genera Lachancea, Nakaseomyces, Naumovia, Vanderwaltozyma and Zygotorulaspora. FEMS Yeast Res 4:233–245CrossRefPubMedGoogle Scholar
  43. Kurtzman CP, Fell JW, Boekhout T (2011) The yeasts: a taxonomic study, 5th edn. Elsevier, AmsterdamGoogle Scholar
  44. Lachance MA (2007) Current status of Kluyveromyces systematics. FEMS Yeast Res 7:642–645CrossRefPubMedGoogle Scholar
  45. Lachance MA (2011) Kluyveromyces van der Walt (1971). In: Kurtzman CP, Fell JW, Boekhout T (2011) (eds) The yeasts: a taxonomic study, vol. 2, 5th edn. Elsevier. AmsterdamGoogle Scholar
  46. Lane MM, Morrissey JP (2010) Kluyveromyces marxianus: a yeast emerging from its sister’s shadow. Fungal Biol Rev 24:17–26. doi: 10.1016/j.fbr.2010.01.001 CrossRefGoogle Scholar
  47. Laukens B, De Visscher C, Callewaert N (2015) Engineering yeast for producing human glycoproteins: where are we now? Future Microbiol 10(1):21–34. doi: 10.2217/FMB.14.104 CrossRefPubMedGoogle Scholar
  48. Lee KS, Kim JS, Heo P, Yang TJ, Sung YJ, Cheon Y, Koo HM, Yu BJ, Seo JH, Jin YS, Park JC, Kweon DH (2013) Characterization of Saccharomyces cerevisiae promoters for heterologous gene expression in Kluyveromyces marxianus. Appl Microbiol Biotechnol 97:2029–2041. doi: 10.1007/s00253-012-4306-7 CrossRefPubMedGoogle Scholar
  49. Lertwattanasakul N, Kosaka T, Hosoyama A, Suzuki Y, Rodrussamee N, Matsutani M, Murata M, Fujimoto N, Suprayogi TK, Limtong S, Fujita N, Yamada M (2015) Genetic basis of the highly efficient yeast Kluyveromyces marxianus: complete genome sequence and transcriptome analyses. Biotechnol Biofuels 8:47. doi: 10.1186/s13068-015-0227-x CrossRefPubMedPubMedCentralGoogle Scholar
  50. Li H, Sethuraman N, Stadheim TA, Zha D, Prinz B, Ballew N, Bobrowicz P, Choi B-K, Cook WJ, Cukan M, Houston-Cummings NR, Davidson R, Gong B, Hamilton SR, Hoopes JP, Jiang Y, Kim N, Mansfield R, Nett JH, Rios S, Strawbridge R, Wildt S, Gerngross TU (2006) Optimization of humanized IgGs in glycoengineered Pichia pastoris. Nat Biotechnol 24(2):210–215. doi: 10.1038/nbt1178 CrossRefPubMedGoogle Scholar
  51. Ling KC (2008) Whey to ethanol: a biofuel role of dairy cooperatives? USDA Rural Development, Research Report 214 http://wwwrdusdagov/files/RR214pdf. Acessed 18 Feb 2016
  52. Llorente B, Malpertuy A, Blandin G, Artiguenave F, Wincker P, Dujon B (2000) Genomic exploration of the hemiascomycetous yeasts: 12. Kluyveromyces marxianus var. marxianus. FEBS Lett 487:71–75CrossRefPubMedGoogle Scholar
  53. López-López O, Fuciños P, Pastrana L, Rúa ML, Cerdán ME, González-Siso MI (2010) Heterologous expression of an esterase from Thermus thermophilus HB27 in Saccharomyces cerevisiae. J Biotechnol 145:226–232. doi: 10.1016/j.jbiotec.2009.11.017 CrossRefPubMedGoogle Scholar
  54. López-López O, Cerdán ME, González-Siso MI (2015) Thermus thermophilus as a source of thermostable lipolytic enzymes. Microorganisms 3:792–808. doi: 10.3390/microorganisms3040792 CrossRefGoogle Scholar
  55. Löser C, Urit T, Bley T (2014) Perspectives for the biotechnological production of ethyl acetate by yeasts. Appl Microbiol Biotechnol 98:5397–5415. doi: 10.1007/s00253-014-5765-9 CrossRefPubMedGoogle Scholar
  56. Matsuzaki C, Nakagawa A, Koyanagi T, Tanaka K, Minami H, Tamaki H, Katayama T, Yamamoto K, Kumagai H (2012) Kluyveromyces marxianus-based platform for direct ethanol fermentation and recovery from cellulosic materials under air-ventilated conditions. J Biosci Bioeng 113:604–607. doi: 10.1016/j.jbiosc.2011.12.007 CrossRefPubMedGoogle Scholar
  57. Moreno AD, Ibarra D, Ballesteros I, González A, Ballesteros M (2013) Comparing cell viability and ethanol fermentation of the thermotolerant yeast Kluyveromyces marxianus and Saccharomyces cerevisiae on steam-exploded biomass treated with laccase. Bioresour Technol 135:239–245. doi: 10.1016/j.biortech.2012.11.095 CrossRefPubMedGoogle Scholar
  58. Morrissey JP, Etschmann MM, Schrader J, de Billerbeck GM (2015) Cell factory applications of the yeast Kluyveromyces marxianus for the biotechnological production of natural flavour and fragrance molecules. Yeast 32:3–16. doi: 10.1002/yea.3054 PubMedGoogle Scholar
  59. Nielsen J, Jewett MC (2008) Impact of systems biology on metabolic engineering of Saccharomyces cerevisiae. FEMS Yeast Res 8:122–131. doi: 10.1111/j.1567-1364.2007.00302.x CrossRefPubMedGoogle Scholar
  60. Nielsen J, Keasling JD (2011) Synergies between synthetic biology and metabolic engineering. Nat Biotechnol 29:693–695. doi: 10.1038/nbt.1937 CrossRefPubMedGoogle Scholar
  61. Nonklang S, Abdel-Banat BM, Cha-aim K, Moonjai N, Hoshida H, Limtong S, Yamada M, Akada R (2008) High-temperature ethanol fermentation and transformation with linear DNA in the thermotolerant yeast Kluyveromyces marxianus DMKU3-1042. Appl Environ Microbiol 74:7514–7521. doi: 10.1128/AEM.01854-08 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Nonklang S, Ano A, Abdel-Banat BMA, Saito Y, Hoshida H, Akada R (2009) Construction of flocculent Kluyveromyces marxianus strains suitable for high-temperature ethanol fermentation. Biosci Biotechnol Biochem 73:1090–1095. doi: 10.1271/bbb.80853 CrossRefPubMedGoogle Scholar
  63. Pecota DC, Da Silva NA (2005) Evaluation of the tetracycline promoter system for regulated gene expression in Kluyveromyces marxianus. Biotechnol Bioeng 92:117–123. doi: 10.1002/bit.20584 CrossRefPubMedGoogle Scholar
  64. Pecota DC, Rajgarhia V, Silva NA (2007) Sequential gene integration for the engineering of Kluyveromyces marxianus. J Biotechnol 127:408–416. doi: 10.1016/j.jbiotec.2006.07.031 CrossRefPubMedGoogle Scholar
  65. Porro D, Sauer M, Branduardi P, Mattanovich D (2005) Recombinant protein production in yeasts. Mol Biotechnol 31:245–259. doi: 10.1385/MB:31:3:245 CrossRefPubMedGoogle Scholar
  66. Postma E, Verduyn C, Scheffers WA, Van Dijken JP (1989) Enzymic analysis of the Crabtree effect in glucose-limited chemostat cultures of Saccharomyces cerevisiae. Appl Environ Microbiol 55(2):468–477PubMedPubMedCentralGoogle Scholar
  67. Radecka D, Mukherjee V, Mateo RQ, Stojiljkovic M, Foulquié-Moreno MR, Thevelein JM (2015) Looking beyond Saccharomyces: the potential of non-conventional yeast species for desirable traits in bioethanol fermentation. FEMS Yeast Res 15(6):fov053Google Scholar
  68. Raimondi S, Zanni E, Amaretti A, Palleschi C, Uccelletti D, Rossi M (2013) Thermal adaptability of Kluyveromyces marxianus in recombinant protein production. Microb Cell Factories 12:1–7. doi: 10.1186/1475-2859-12-34 CrossRefGoogle Scholar
  69. Raimondi S, Uccelletti D, Amaretti A, Leonardi A, Palleschi C, Rossi M (2010) Secretion of Kluyveromyces lactis Cu/Zn SOD: strategies for enhanced production. Appl Microbiol Biotechnol 86:871–878. doi: 10.1007/s00253-009-2353-5 CrossRefPubMedGoogle Scholar
  70. Ribeiro O, Gombert AK, Teixeira J, Domingues L (2007) Application of the cre-loxP system for multiple gene disruption in the yeast Kluyveromyces marxianus. J Biotechnol 131:20–26. doi: 10.1016/j.jbiotec.2007.05.027 CrossRefPubMedGoogle Scholar
  71. Rocha SN, Abrahão-Neto J, Cerdán ME, Gombert AK, González-Siso MI (2011) Heterologous expression of a thermophilic esterase in Kluyveromyces yeasts. Appl Microbiol Biotechnol 89:375–385. doi: 10.1007/s00253-010-2869-8 CrossRefPubMedGoogle Scholar
  72. Rocha SN, Abrahão-Neto J, Cerdán ME, González-Siso MI, Gombert AK (2010) Heterologous expression of glucose oxidase in the yeast Kluyveromyces marxianus. Microb Cell Factories 9:1–12. doi: 10.1186/1475-2859-9-4 CrossRefGoogle Scholar
  73. Romanos MA, Scorer CA, Clare JF (1992) Foreign gene expression in yeast: a review. Yeast 8:423–488. doi: 10.1002/yea.320080602 CrossRefPubMedGoogle Scholar
  74. Rouwenhorst RJ, Visser LE, Van Der Baan AA, Scheffers WA, Van Dijken JP (1988) Production, distribution, and kinetic properties of inulinase in continuous cultures of Kluyveromyces marxianus CBS 6556. Appl Environ Microbiol 54:1131–1137PubMedPubMedCentralGoogle Scholar
  75. Sansonetti S, Hobley TJ, Curcio S, Villadsen J, Sin G (2013) Use of continuous lactose fermentation for ethanol production by Kluveromyces marxianus for verification and extension of a biochemically structured model. Bioresour Technol 130:703–709. doi: 10.1016/j.biortech.2012.12.080 CrossRefPubMedGoogle Scholar
  76. Signori L, Passolunghi S, Ruohonen L, Porro D, Branduardi P (2014) Effect of oxygenation and temperature on glucose-xylose fermentation in Kluyveromyces marxianus CBS712 strain. Microb Cell Factories 13:51. doi: 10.1186/1475-2859-13-51 CrossRefGoogle Scholar
  77. Silveira W, Diniz RHS, Cerdán ME, González-Siso MI, Souza R, Vidigal P, Brustolini O, Prata EA, Medeiros A, Paiva L, Nascimento M, Ferreira E, Santos V, Bragança C, Fernandes T, Colombo L, Passos F (2014) Genomic sequence of the yeast Kluyveromyces marxianus CCT 7735 (UFV-3): a highly lactose fermenting yeast isolated from Brazilian dairy industry. Genome Announc 2:e01136–e01114. doi: 10.1128/genomeA.01136-14 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Snoek ISI, Steensma HY (2006) Why does Kluyveromyces lactis not grow under anaerobic conditions? Comparison of essential anaerobic genes of Saccharomyces cerevisiae with the Kluyveromyces lactis genome. FEMS Yeast Res 6:393–403. doi: 10.1111/j.1567-1364.2005.00007.x CrossRefPubMedGoogle Scholar
  79. Solis-Escalante D, van den Broek M, Kuijpers NGA, Pronk JT, Boles E, Daran J-M, Daran-Lapujade P (2015) The genome sequence of the popular hexose-transport-deficient Saccharomyces cerevisiae strain EBY.VW4000 reveals LoxP/Cre-induced translocations and gene loss. FEMS Yeast Res 15(2):fou004. doi: 10.1093/femsyr/fou004 CrossRefPubMedGoogle Scholar
  80. Souza CG Jr, MacDonald Ledingham W, Antônio De Morais M Jr (2001) Utilisation of cheese whey as an alternative growth medium for recombinant strains of Kluyveromyces marxianus. Biotechnol Lett 23:1413–1416. doi: 10.1023/A:1011617914709 CrossRefGoogle Scholar
  81. Stambuk BU, Franden MA, Singh A, Zhang M (2003) D-Xylose transport by Candida succiphila and Kluyveromyces marxianus. Appl Biochem Biotechnol 105-108:255–263. doi: 10.1385/ABAB:106:1-3:255 CrossRefPubMedGoogle Scholar
  82. Suzuki T, Hoshino T, Matsushika A (2014) Draft genome sequence of Kluyveromyces marxianus strain DMB1, isolated from sugarcane bagasse hydrolysate. Genome Announc 2(4):e00733–e00714. doi: 10.1128/genomeA.00733-14 CrossRefPubMedPubMedCentralGoogle Scholar
  83. Theron CW, Labuschagné M, Gudiminchi R, Albertyn J, Smit MS (2014) A broad-range yeast expression system reveals Arxula adeninivorans expressing a fungal self-sufficient cytochrome P450 monooxygenase as an excellent whole-cell biocatalyst. FEMS Yeast Res 14:556–566. doi: 10.1111/1567-1364.12142 CrossRefPubMedGoogle Scholar
  84. van der Walt JP (1956) Kluyveromyces—a new yeast genus of the Endomycetales. Antonie Van Leeuwenhoek 22:265–272CrossRefGoogle Scholar
  85. van Ooyen AJ, Dekker P, Huang M, Olsthoorn MM, Jacobs DI, Colussi PA, Taron CH (2006) Heterologous protein production in the yeast Kluyveromyces lactis. FEMS Yeast Res 6:381–392CrossRefPubMedGoogle Scholar
  86. Walker GM, O’Neill JD (1990) Morphological and metabolic changes in the yeast Kluyveromyces marxianus var. marxianus NRRLy2415 during fermentation of lactose. J Chem Technol Biotechnol 49:75–89. doi: 10.1002/jctb.280490108 CrossRefGoogle Scholar
  87. Wang YCM, Chuang LL, Lee FWF, Da Silva NA (2003) Sequential cloned gene integration in the yeast Kluyveromyces lactis. Appl Microbiol Biotechnol 62:523–527. doi: 10.1007/s00253-003-1319-2 CrossRefPubMedGoogle Scholar
  88. Wang R, Wang D, Gao X, Hong J (2014) Direct fermentation of raw starch using a Kluyveromyces marxianus strain that express glucoamylase and alpha-amylase to produce ethanol. Biotechnol Prog 30:338–347. doi: 10.1002/btpr.1877 CrossRefPubMedGoogle Scholar
  89. WenJuan MO, Chao GUO, Hong LV (2014) Review of Kluyveromyces marxianus’ genetic and physiological features. Sci Sin Vitae. doi: 10.1360/N052016-00101 Google Scholar
  90. Wilkins MR, Mueller M, Eichling S, Banat IM (2008) Fermentation of xylose by the thermotolerant yeast strains Kluyveromyces marxianus IMB2, IMB4, and IMB5 under anaerobic conditions. Process Biochem 43:346–350. doi: 10.1016/j.procbio.2007.12.011 CrossRefGoogle Scholar
  91. Wolfe KH, Shields DC (1997) Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387(12):708–713CrossRefPubMedGoogle Scholar
  92. Yanase S, Hasunuma T, Yamada R, Tanaka T, Ogino C, Fukuda H, Kondo A (2010) Direct ethanol production from cellulosic materials at high temperature using the thermotolerant yeast Kluyveromyces marxianus displaying cellulolytic enzymes. Appl Microbiol Biotechnol 88:381–388. doi: 10.1007/s00253-010-2784-z CrossRefPubMedGoogle Scholar
  93. Yang C, Hu S, Zhu S, Wang D, Gao X, Hong J (2015) Characterizing yeast promoters used in Kluyveromyces marxianus. World J Microbiol Biotechnol 31:1641–1646. doi: 10.1007/s11274-015-1899-x CrossRefPubMedGoogle Scholar
  94. Yarimizu T, Nakamura M, Hoshida H, Akada R (2015) Synthetic signal sequences that enable efficient secretory protein production in the yeast Kluyveromyces marxianus. Microb Cell Factories 14:20. doi: 10.1186/s12934-015-0203-y CrossRefGoogle Scholar
  95. Yoshida Y, Naito E, Mizukoshi H, Watanabe Y, Kimura K, Yokoi W, Sato T, Okumura T, Ito M, Sawada H (2009) Side-chain structure of cell surface polysaccharide, mannan, affects hypocholesterolemic activity of yeast. J Agric Food Chem 57:8003–8009. doi: 10.1021/jf900347q CrossRefPubMedGoogle Scholar
  96. Zhang J, Zhang B, Wang D, Gao X, Hong J (2014) Xylitol production at high temperature by engineering Kluyveromyces marxianus. Bioresour Technol 152:192–201. doi: 10.1016/j.biortech.2013.10.109 CrossRefPubMedGoogle Scholar
  97. Zhang J, Zhang B, Wang D, Gao X, Sun L, Hong J (2015) Rapid ethanol production at elevated temperatures by engineered thermotolerant Kluyveromyces marxianus via NADP(H)-preferring xylose reductase-xylitol dehydrogenase pathway. Metab Eng 31:140–152. doi: 10.1016/j.ymben.2015.07.008 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Andreas K. Gombert
    • 1
  • José Valdo MadeiraJr.
    • 1
  • María-Esperanza Cerdán
    • 2
  • María-Isabel González-Siso
    • 2
    Email author
  1. 1.School of Food EngineeringUniversity of CampinasCampinasBrazil
  2. 2.Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía Celular e Molecular, Facultade de CienciasUniversidade da CoruñaA CoruñaSpain

Personalised recommendations