Applied Microbiology and Biotechnology

, Volume 100, Issue 14, pp 6119–6130 | Cite as

Transporter and its engineering for secondary metabolites

  • Huajun Lv
  • Jianhua Li
  • Yingying Wu
  • Sanjog Garyali
  • Yong WangEmail author


Secondary metabolites possess a lot of biological activities, and to achieve their functions, transmembrane transportation is crucial. Elucidation of their transport mechanisms in the cell is critical for discovering ways to improve the production. Here, we have summarized the recent progresses for representative secondary metabolite transporters and also the strategies for uncovering the transporter systems in plants and microbes. We have also discussed the transporter engineering strategies being utilized for improving the heterologous natural product production, which exhibits promising future under the guide of synthetic biology.


Secondary metabolites Transporter Engineering Heterologous expression Synthetic biology 



This work was supported by the National Basic Research Program of China (“973” Program, grant No. 2012CB721104), the National Natural Science Foundation of China (grant No. 31170101).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. Alexander NJ, McCormick SP, Hohn TM (1999) TRI12, a trichothecene efflux pump from Fusarium sporotrichioides: gene isolation and expression in yeast. Mol Gen Genet 261:977–984CrossRefPubMedGoogle Scholar
  2. Alexander NJ, Proctor RH, McCormick SP (2009) Genes, gene clusters, and biosynthesis of trichothecenes and fumonisins in Fusarium. Toxin Rev 28(2–3):198–215CrossRefGoogle Scholar
  3. Arabestani MR, Rajabpour M, Yousefi Mashouf R, Alikhani MY, Mousavi SM (2015) Expression of efflux pump MexAB-OprM and OprD of Pseudomonas aeruginosa strains isolated from clinical samples using qRT-PCR. Arch Iran Med 18(2):102–108PubMedGoogle Scholar
  4. Badri DV, Loyola-Vargas VM, Du J, Stermitz FR, Broeckling CD, Iglesias-Andreu L, Vivanco JM (2008) Transcriptome analysis of Arabidopsis roots treated with signaling compounds: a focus on signal transduction, metabolic regulation and secretion. New Phytol 179(1):209–223CrossRefPubMedGoogle Scholar
  5. Baral B, Kovalchuk A, Asiegbu FO (2016) Genome organisation and expression profiling of ABC protein-encoding genes in Heterobasidion annosum s.L. complex. Fungal Biol 120(3):376–384CrossRefPubMedGoogle Scholar
  6. Briskin DP (2000) Medicinal plants and phytomedicines. Linking plant biochemistry and physiology to human health. Plant Physiol 124(2):507–514CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bultreys A, Trombik T, Drozak A, Boutry M (2009) Nicotiana plumbaginifolia plants silenced for the ATP-binding cassette transporter gene NpPDR1 show increased susceptibility to a group of fungal and oomycete pathogens. Mol Plant Pathol 10(5):651–663CrossRefPubMedGoogle Scholar
  8. Burla B, Pfrunder S, Nagy R, Francisco RM, Lee Y, Martinoia E (2013) Vacuolar transport of abscisic acid glucosyl ester is mediated by ATP-binding cassette and proton-antiport mechanisms in Arabidopsis. Plant Physiol 163(3):1446–1458CrossRefPubMedPubMedCentralGoogle Scholar
  9. Cao H, Nuruzzaman M, Xiu H, Huang J, Wu K, Chen X, Li J, Wang L, Jeong J-H, Park S-J, Yang F, Luo J, Luo Z (2015) Transcriptome analysis of methyl jasmonate-elicited Panax ginseng adventitious roots to discover putative ginsenoside biosynthesis and transport genes. Int J Mol Sci 16(2):3035–3057CrossRefPubMedPubMedCentralGoogle Scholar
  10. Chen B, Ling H, Chang MW (2013) Transporter engineering for improved tolerance against alkane biofuels in Saccharomyces cerevisiae. Biotechnol Biofuels 6:21CrossRefPubMedPubMedCentralGoogle Scholar
  11. Chen L, Liu Y, Liu H, Kang L, Geng J, Gai Y, Ding Y, Sun H, Li Y (2015) Identification and expression analysis of MATE genes involved in flavonoid transport in blueberry plants. PLoS One 10(3):e0118578CrossRefPubMedPubMedCentralGoogle Scholar
  12. Choi D-W, Jung J, Ha YI, Park H-W, In DS, Chung H-J, Liu JR (2004) Analysis of transcripts in methyl jasmonate-treated ginseng hairy roots to identify genes involved in the biosynthesis of ginsenosides and other secondary metabolites. Plant Cell Rep 23(8):557–566CrossRefPubMedGoogle Scholar
  13. Choudhury D, Das Talukdar A, Dutta Choudhury M, Maurya AP, Paul D, Dhar Chanda D, Chakravorty A, Bhattacharjee A (2015) Transcriptional analysis of MexAB-OprM efflux pumps system of Pseudomonas aeruginosa and its role in carbapenem resistance in a tertiary referral hospital in India. PLoS One 10(7):e0133842CrossRefPubMedPubMedCentralGoogle Scholar
  14. Corchete P, Bru R (2013) Proteome alterations monitored by DIGE analysis in Silybum marianum cell cultures elicited with methyl jasmonate and methyl B cyclodextrin. J Proteome 85:99–108CrossRefGoogle Scholar
  15. Crouzet J, Roland J, Peeters E, Trombik T, Ducos E, Nader J, Boutry M (2013) NtPDR1, a plasma membrane ABC transporter from Nicotiana tabacum, is involved in diterpene transport. Plant Mol Biol 82(1–2):181–192CrossRefPubMedGoogle Scholar
  16. Deighton N, Muckenschnabel I, Colmenares AJ, Collado IG, Williamson B (2001) Botrydial is produced in plant tissues infected by Botrytis cinerea. Phytochemistry 57(5):689–692CrossRefPubMedGoogle Scholar
  17. Doshi R, Nguyen T, Chang G (2013) Transporter-mediated biofuel secretion. Proc Natl Acad Sci 110(11):7642–7647CrossRefPubMedPubMedCentralGoogle Scholar
  18. Du D, Zhu Y, Wei J, Tian Y, Niu G, Tan H (2013) Improvement of gougerotin and nikkomycin production by engineering their biosynthetic gene clusters. Appl Microbiol Biotechnol 97(14):6383–6396CrossRefPubMedGoogle Scholar
  19. Dunlop MJ (2011) Engineering microbes for tolerance to next-generation biofuels. Biotechnol Biofuels 4:32CrossRefPubMedPubMedCentralGoogle Scholar
  20. Dunlop MJ, Dossani ZY, Szmidt HL, Chu HC, Lee TS, Keasling JD, Hadi MZ, Mukhopadhyay A (2011) Engineering microbial biofuel tolerance and export using efflux pumps. Mol Syst Biol 7:487CrossRefPubMedPubMedCentralGoogle Scholar
  21. Fernández-Aguado M, Teijeira F, Martín JF, Ullán RV (2012) A vacuolar membrane protein affects drastically the biosynthesis of the ACV tripeptide and the beta-lactam pathway of Penicillium chrysogenum. Appl Microbiol Biotechnol 97(2):795–808CrossRefPubMedGoogle Scholar
  22. Foo JL, Leong SSJ (2013) Directed evolution of an E. coli inner membrane transporter for improved efflux of biofuel molecules. Biotechnol Biofuels 6:81CrossRefPubMedPubMedCentralGoogle Scholar
  23. Foo JL, Jensen HM, Dahl RH, George K, Keasling JD, Lee TS, Leong S, Mukhopadhyay A (2014) Improving microbial biogasoline production in escherichia coli using tolerance engineering. MBio 5(6):e01932-14. doi: 10.1128/mBio.01932-14
  24. Fowler ZL, Gikandi WW, Koffas MAG (2009) Increased malonyl coenzyme a biosynthesis by tuning the Escherichia coli metabolic network and its application to flavanone production. Appl Environ Microbiol 75(18):5831–5839CrossRefPubMedPubMedCentralGoogle Scholar
  25. Frangne N, Eggmann T, Koblischke C, Weissenböck G, Martinoia E, Klein M (2002) Flavone glucoside uptake into barley mesophyll and Arabidopsis cell culture vacuoles. Energization occurs by H(+)-antiport and ATP-binding cassette-type mechanisms. Plant Physiol 128(2):726–733CrossRefPubMedPubMedCentralGoogle Scholar
  26. Gillissen B, Bürkle L, André B, Kühn C, Rentsch D, Brandl B, Frommer WB (2000) A new family of high-affinity transporters for adenine, cytosine, and purine derivatives in Arabidopsis. Plant Cell 12(2):291–300CrossRefPubMedPubMedCentralGoogle Scholar
  27. Gomes ES, Schuch V, de Macedo Lemos EG (2013) Biotechnology of polyketides: new breath of life for the novel antibiotic genetic pathways discovery through metagenomics. Braz J Microbiol 44(4):1007–1034CrossRefPubMedGoogle Scholar
  28. Grec S, Vanham D, De Ribaucourt JC, Purnelle B, Boutry M (2003) Identification of regulatory sequence elements within the transcription promoter region of NpABC1, a gene encoding a plant ABC transporter induced by diterpenes. Plant J 35(2):237–250CrossRefPubMedGoogle Scholar
  29. Han JY, Hwang HS, Choi SW, Kim HJ, Choi YE (2012) Cytochrome P450 CYP716A53v2 catalyzes the formation of protopanaxatriol from protopanaxadiol during ginsenoside biosynthesis in Panax ginseng. Plant Cell Physiol 53(9):1535–1545CrossRefPubMedGoogle Scholar
  30. Hildreth SB, Gehman EA, Yang H, Lu RH, Ritesh KC, Harich KC, Yu S, Lin J, Sandoe JL, Okumoto S, Murphy AS, Jelesko JG (2011) Tobacco nicotine uptake permease (NUP1) affects alkaloid metabolism. Proc Natl Acad Sci 108(44):18179–18184CrossRefPubMedPubMedCentralGoogle Scholar
  31. Huang X, Lu X, Li Y, Li X, Li J-J (2014) Improving itaconic acid production through genetic engineering of an industrial Aspergillus terreus strain. Microb Cell Factories 13:119CrossRefGoogle Scholar
  32. Huffman J, Gerber R, Du L (2010) Recent advancements in the biosynthetic mechanisms for polyketide-derived mycotoxins. Biopolymers 93(9):764–776CrossRefPubMedPubMedCentralGoogle Scholar
  33. Jasinski M, Ducos E, Martinoia E, Boutry M (2003) The ATP-binding cassette transporters: structure, function, and gene family comparison between Rice and Arabidopsis. Plant Physiol 131(3):1169–1177CrossRefPubMedPubMedCentralGoogle Scholar
  34. Jasinski M, Stukkens Y, Degand H, Purnelle B, Marchand-Brynaert J, Boutry M (2001) A plant plasma membrane ATP binding cassette-type transporter is involved in antifungal terpenoid secretion. Plant Cell 13(5):1095–1107CrossRefPubMedPubMedCentralGoogle Scholar
  35. Jelesko JG (2012) An expanding role for purine uptake permease-like transporters in plant secondary metabolism. Front Plant Sci 3:1–5CrossRefGoogle Scholar
  36. Kato K, Shoji T, Hashimoto T (2014) Tobacco nicotine uptake permease regulates the expression of a key transcription factor gene in the nicotine biosynthesis pathway. Plant Physiol 166(4):2195–2204CrossRefPubMedPubMedCentralGoogle Scholar
  37. Kell DB, Swainston N, Pir P, Oliver SG (2015) Membrane transporter engineering in industrial biotechnology and whole cell biocatalysis. Trends Biotechnol 33(4):237–246CrossRefPubMedGoogle Scholar
  38. Kim M, Ahn BY, Lee JS, Chung SS, Lim S, Park SG, Jung HS, Lee HK, Park KS (2009) The ginsenoside Rg3 has a stimulatory effect on insulin signaling in L6 myotubes. Biochem Biophys Res Commun 389(1):70–73CrossRefPubMedGoogle Scholar
  39. Kistler HC, Broz K (2015) Cellular compartmentalization of secondary metabolism. Front Microbiol 6:68CrossRefPubMedPubMedCentralGoogle Scholar
  40. Klein M, Weissenbock G, Dufaud A, Gaillard C, Kreuz K, Martinoia E (1996) Different energization mechanisms drive the vacuolar uptake of a flavonoid glucoside and a herbicide glucoside. J Biol Chem 271(47):29666–29671CrossRefPubMedGoogle Scholar
  41. Kretzschmar T, Kohlen W, Sasse J, Borghi L, Schlegel M, Bachelier J, Reinhardt D, Bours R, Bouwmeester HJ, Martinoia E (2012) A petunia ABC protein controls strigolactone-dependent symbiotic signalling and branching. Nature 483(7389):341–344CrossRefPubMedGoogle Scholar
  42. Leonard E, Yan Y, Fowler ZL, Li Z, Lim CG, Lim KH, Koffas MA (2008) Strain improvement of recombinant Escherichia coli for efficient production of plant flavonoids. Mol Pharm 5(2):257–265CrossRefPubMedGoogle Scholar
  43. Limon MC, Rodriguez-Ortiz R, Avalos J (2010) Bikaverin production and applications. Appl Microbiol Biotechnol 87:21–29CrossRefPubMedGoogle Scholar
  44. Linnemannstöns P, Schulte J, del Mar PM, Proctor RH, Avalos J, Tudzynski B (2002) The polyketide synthase gene pks4 from Gibberella fujikuroi encodes a key enzyme in the biosynthesis of the red pigment bikaverin. Fungal Genet Biol 37(2):134–148CrossRefPubMedGoogle Scholar
  45. Lu M (2015) Structures of multidrug and toxic compound extrusion transporters and their mechanistic implications. Channels 10(2):88–100CrossRefPubMedGoogle Scholar
  46. Marinova K, Pourcel L, Weder B, Schwarz M, Barron D, Routaboul J-M, Debeaujon I, Klein M (2007) The Arabidopsis MATE transporter TT12 acts as a vacuolar flavonoid/H(+)-antiporter active in proanthocyanidin-accumulating cells of the seed coat. Plant Cell 19(6):2023–2038CrossRefPubMedPubMedCentralGoogle Scholar
  47. Martin JF, Casqueiro J, Liras P (2005) Secretion systems for secondary metabolites: how producer cells send out messages of intercellular communication. Curr Opin Microbiol 8(3):282–293CrossRefPubMedGoogle Scholar
  48. Masuda D, Ishida M, Yamaguchi K, Yamaguchi I, Kimura M, Nishiuchi T (2007) Phytotoxic effects of trichothecenes on the growth and morphology of Arabidopsis thaliana. J Exp Bot 58(7):1617–1626CrossRefPubMedGoogle Scholar
  49. McMurry LM, Levy SB (1998) Revised sequence of OtrB (Tet347) tetracycline efflux protein from Streptomyces rimosus. Antimicrob Agents Chemother 42(11):3050PubMedPubMedCentralGoogle Scholar
  50. Menke J, Dong Y, Kistler HC (2012) Fusarium graminearum Tri12p influences virulence to wheat and trichothecene accumulation. Mol Plant-Microbe Interact 25(11):1408–1418CrossRefPubMedGoogle Scholar
  51. Menke J, Weber J, Broz K, Kistler HC (2013) Cellular development associated with induced mycotoxin synthesis in the filamentous fungus Fusarium graminearum. PLoS One 8(5):e63077CrossRefPubMedPubMedCentralGoogle Scholar
  52. Mishra MN, Daniels L (2013) Characterization of the MSMEG_2631 Gene (mmp) encoding a multidrug and toxic compound extrusion (MATE) family protein in Mycobacterium smegmatis and exploration of its polyspecific nature using Biolog Phenotype MicroArray. J Bacteriol 195(7):1610–1621CrossRefPubMedPubMedCentralGoogle Scholar
  53. Monnappa AK, Lee S, Mitchell RJ (2013) Sensing of plant hydrolysate-related phenolics with an aaeXAB::luxCDABE bioreporter strain of Escherichia coli. Bioresour Technol 127:429–434CrossRefPubMedGoogle Scholar
  54. Moriyama Y, Hiasa M, Matsumoto T, Omote H (2008) Multidrug and toxic compound extrusion (MATE)-type proteins as anchor transporters for the excretion of metabolic waste products and xenobiotics. Xenobiotica 38(7–8):1107–1118CrossRefPubMedGoogle Scholar
  55. Nikaido H, Takatsuka Y (2009) Mechanisms of RND multidrug efflux pumps. Biochim Biophys Acta 1794(5):769–781CrossRefPubMedGoogle Scholar
  56. Niu G, Li L, Wei J, Tan H (2013) Cloning, heterologous expression, and characterization of the gene cluster required for gougerotin biosynthesis. Chem Biol 20(1):34–44CrossRefPubMedGoogle Scholar
  57. Nuruzzaman M, Zhang R, Cao HZ, Luo ZY (2014) Plant pleiotropic drug resistance transporters: transport mechanism, gene expression, and function. J Integr Plant Biol 56(8):729–740CrossRefPubMedGoogle Scholar
  58. Olson Å, Aerts A, Asiegbu F, Belbahri L, Bouzid O, Broberg A, Canbäck B, Coutinho PM, Cullen D, Dalman K, Deflorio G, van Diepen LTA, Dunand C, Duplessis S, Durling M, Gonthier P, Grimwood J, Fossdal CG, Hansson D, Henrissat B, Hietala A, Himmelstrand K, Hoffmeister D, Högberg N, James TY, Karlsson M, Kohler A, Kües U, Lee Y-H, Lin Y-C, Lind M, Lindquist E, Lombard V, Lucas S, Lundén K, Morin E, Murat C, Park J, Raffaello T, Rouzé P, Salamov A, Schmutz J, Solheim H, Ståhlberg J, Vélëz H, de Vries RP, Wiebenga A, Woodward S, Yakovlev I, Garbelotto M, Martin F, Grigoriev IV, Stenlid J (2012) Insight into trade-off between wood decay and parasitism from the genome of a fungal forest pathogen. New Phytol 194(4):1001–1013CrossRefPubMedGoogle Scholar
  59. Pai H, Kim J-W, Kim J, Lee JH, Choe KW, Gotoh N (2001) Carbapenem resistance mechanisms in Pseudomonas aeruginosa clinical isolates. Antimicrob Agents Chemother 45(2):480–484CrossRefPubMedPubMedCentralGoogle Scholar
  60. Paulsen IT, Brown MH, Skurray RA (1996) Proton-dependent multidrug efflux systems. Microbiol Rev 60(4):575–608PubMedPubMedCentralGoogle Scholar
  61. Petkovic H, Cullum J, Hranueli D, Hunter IS, Peric-Concha N, Pigac J, Thamchaipenet A, Vujaklija D, Long PF (2006) Genetics of Streptomyces rimosus, the oxytetracycline producer. Microbiol Mol Biol Rev 70(3):704–728CrossRefPubMedPubMedCentralGoogle Scholar
  62. Qiu J, Zhuo Y, Zhu D, Zhou X, Zhang L, Bai L, Deng Z (2011) Overexpression of the ABC transporter AvtAB increases avermectin production in Streptomyces avermitilis. Appl Microbiol Biotechnol 92(2):337–345CrossRefPubMedGoogle Scholar
  63. Steiger MG, Punt PJ, Ram AFJ, Mattanovich D, Sauer M (2016) Characterizing MttA as a mitochondrial cis-aconitic acid transporter by metabolic engineering. Metab Eng 35:95–104CrossRefPubMedGoogle Scholar
  64. Shitan N, Bazin I, Dan K, Obata K, Kigawa K, Ueda K, Sato F, Forestier C, Yazaki K (2003) Involvement of CjMDR1, a plant multidrug-resistance-type ATP-binding cassette protein, in alkaloid transport in Coptis japonica. Proc Natl Acad Sci 100(2):751–756CrossRefPubMedPubMedCentralGoogle Scholar
  65. Shitan N, Dalmas F, Dan K, Kato N, Ueda K, Sato F, Forestier C, Yazaki K (2013) Characterization of Coptis japonica CjABCB2, an ATP-binding cassette protein involved in alkaloid transport. Phytochemistry 91:109–116CrossRefPubMedGoogle Scholar
  66. Shitan N, Hayashida M, Yazaki K (2015) Translocation and accumulation of nicotine via distinct spatio-temporal regulation of nicotine transporters in Nicotiana tabacum. Plant Signal Behav 10(7):e1035852PubMedPubMedCentralGoogle Scholar
  67. Shitan N, Yazaki K (2007) Accumulation and membrane transport of plant alkaloids. Curr Pharm Biotechnol 8(4):244–252CrossRefPubMedGoogle Scholar
  68. Shoji T (2014) ATP-binding cassette and multidrug and toxic compound extrusion transporters in plants: a common theme among diverse detoxification mechanisms. Int Rev Cell Mol Biol 309:303–346CrossRefPubMedGoogle Scholar
  69. Shoji T, Inai K, Yazaki Y, Sato Y, Takase H, Shitan N, Yazaki K, Goto Y, Toyooka K, Matsuoka K, Hashimoto T (2008) Multidrug and toxic compound extrusion-type transporters implicated in vacuolar sequestration of nicotine in tobacco roots. Plant Physiol 149(2):708–718CrossRefPubMedGoogle Scholar
  70. Stukkens Y, Bultreys A, Grec S, Trombik T, Vanham D, Boutry M (2005) NpPDR1, a pleiotropic drug resistance-type ATP-binding cassette transporter from Nicotiana plumbaginifolia, plays a major role in plant pathogen defense. Plant Physiol 139(1):341–352CrossRefPubMedPubMedCentralGoogle Scholar
  71. Suzuki H, Reddy MSS, Naoumkina M, Aziz N, May GD, Huhman DV, Sumner LW, Blount JW, Mendes P, Dixon RA (2004) Methyl jasmonate and yeast elicitor induce differential transcriptional and metabolic re-programming in cell suspension cultures of the model legume Medicago truncatula. Planta 220(5):696–707CrossRefPubMedGoogle Scholar
  72. Teijeira F, Ullan RV, Guerra SM, Garcia-Estrada C, Vaca I, Martin JF (2009) The transporter CefM involved in translocation of biosynthetic intermediates is essential for cephalosporin production. Biochem J 418(1):113–124CrossRefPubMedGoogle Scholar
  73. Tian L (2015) Using hairy roots for production of valuable plant secondary metabolites. Adv Biochem Eng Biotechnol 149:275–324PubMedGoogle Scholar
  74. Tomko TA, Dunlop MJ (2015) Engineering improved bio-jet fuel tolerance in Escherichia coli using a transgenic library from the hydrocarbon-degrader Marinobacter aquaeolei. Biotechnol Biofuels 8:165CrossRefPubMedPubMedCentralGoogle Scholar
  75. Ullán RV, Casqueiro J, Banuelos O, Fernandez FJ, Gutierrez S, Martin JF (2002) A novel epimerization system in fungal secondary metabolism involved in the conversion of isopenicillin N into penicillin N in Acremonium chrysogenum. J Biol Chem 227(48):46216–46225CrossRefGoogle Scholar
  76. Ullán RV, Teijeira F, Guerra SM, Vaca I, Martin JF (2010) Characterization of a novel peroxisome membrane protein essential for conversion of isopenicillin N into cephalosporin C. Biochem J 432(2):227–236CrossRefPubMedGoogle Scholar
  77. Van Bogaert INA, Holvoet K, Roelants SLKW, Li B, Lin Y-C, Van de Peer Y, Soetaert W (2013) The biosynthetic gene cluster for sophorolipids: a biotechnological interesting biosurfactant produced by Starmerella bombicola. Mol Microbiol 88(3):501–509CrossRefPubMedGoogle Scholar
  78. Van Dyk TK, Templeton LJ, Cantera KA, Sharpe PL, Sariaslani FS (2004) Characterization of the Escherichia coli AaeAB efflux pump: a metabolic relief valve? J Bacteriol 186(21):7196–7204CrossRefPubMedPubMedCentralGoogle Scholar
  79. van Veen HW, Shitan N, Minami S, Morita M, Hayashida M, Ito S, Takanashi K, Omote H, Moriyama Y, Sugiyama A, Goossens A, Moriyasu M, Yazaki K (2014) Involvement of the leaf-specific multidrug and toxic compound extrusion (MATE) transporter Nt-JAT2 in vacuolar sequestration of nicotine in Nicotiana tabacum. PLoS One 9(9):e108789CrossRefGoogle Scholar
  80. Wagner GJ (1991) Secreting glandular trichomes: more than just hairs. Plant Physiol 96(3):675–679CrossRefPubMedPubMedCentralGoogle Scholar
  81. Wang J-F, Xiong Z-Q, Li S-Y, Wang Y (2013) Enhancing isoprenoid production through systematically assembling and modulating efflux pumps in Escherichia coli. Appl Microbiol Biotechnol 97(18):8057–8067CrossRefPubMedGoogle Scholar
  82. Wiemann P, Willmnann A, Straeten M, Kleigrewe K, Beyer M, Humpf HU, Tudzynski B (2009) Biosynthesis of the red pigment bikaverin in Fusarium fujikuroi: genes, their function and regulation. Mol Microbiol 72(4):931–946CrossRefPubMedGoogle Scholar
  83. Wu J, Du G, Chen J, Zhou J (2015) Enhancing flavonoid production by systematically tuning the central metabolic pathways based on a CRISPR interference system in Escherichia coli. Sci Rep 5:13477CrossRefPubMedPubMedCentralGoogle Scholar
  84. Yang J, Xiong Z-Q, Song S-J, Wang J-F, Lv H-J, Wang Y (2015) Improving heterologous polyketide production in Escherichia coli by transporter engineering. Appl Microbiol Biotechnol 99(20):8691–8700CrossRefPubMedGoogle Scholar
  85. Yang K-M, Woo J-M, Lee S-M, Park J-B (2013) Improving ethanol tolerance of Saccharomyces cerevisiae by overexpressing an ATP-binding cassette efflux pump. Chem Eng Sci 103:74–78CrossRefGoogle Scholar
  86. Yazaki K (2005) Transporters of secondary metabolites. Curr Opin Plant Biol 8(3):301–307CrossRefPubMedGoogle Scholar
  87. Yazaki K (2006) ABC transporters involved in the transport of plant secondary metabolites. FEBS Lett 580(4):1183–1191CrossRefPubMedGoogle Scholar
  88. Yazaki K, Sugiyama A, Morita M, Shitan N (2007) Secondary transport as an efficient membrane transport mechanism for plant secondary metabolites. Phytochem Rev 7(3):513–524CrossRefGoogle Scholar
  89. Yu L, Yan X, Wang L, Chu J, Zhuang Y, Zhang S, Guo M (2012) Molecular cloning and functional characterization of an ATP-binding cassette transporter OtrC from Streptomyces rimosus. BMC Biotechnol 12:52CrossRefPubMedPubMedCentralGoogle Scholar
  90. Zhang C, Chen X, Stephanopoulos G, Too H-P (2016) Efflux transporter engineering markedly improves amorphadiene production in Escherichia coli. Biotechnol Bioeng. doi: 10.1002/bit25943 Google Scholar
  91. Zhang R, Huang J, Zhu J, Xie X, Tang Q, Chen X, Luo J, Luo Z (2013a) Isolation and characterization of a novel PDR-type ABC transporter gene PgPDR3 from Panax ginseng C.A. Meyer induced by methyl jasmonate. Mol Biol Rep 40(11):6195–6204CrossRefPubMedGoogle Scholar
  92. Zhang R, Zhu J, Cao H-Z, An Y-R, Huang J-J, Chen X-H, Mohammed N, Afrin S, Luo Z-Y (2013b) Molecular cloning and expression analysis of PDR1-like gene in ginseng subjected to salt and cold stresses or hormonal treatment. Plant Physiol Biochem 71:203–211CrossRefPubMedGoogle Scholar
  93. Zhao J, Dixon RA (2010) The 'ins' and 'outs' of flavonoid transport. Trends Plant Sci 15(2):72–80CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Huajun Lv
    • 1
  • Jianhua Li
    • 1
  • Yingying Wu
    • 1
  • Sanjog Garyali
    • 1
  • Yong Wang
    • 1
    Email author
  1. 1.Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina

Personalised recommendations