Advertisement

Applied Microbiology and Biotechnology

, Volume 100, Issue 14, pp 6361–6373 | Cite as

A survey of biofilms on wastewater aeration diffusers suggests bacterial community composition and function vary by substrate type and time

  • Peter A. Noble
  • Hee-Deung Park
  • Betty H. OlsonEmail author
  • Pitiporn Asvapathanagul
  • M. Colby Hunter
  • Manel Garrido-Baserba
  • Sang-Hoon Lee
  • Diego RossoEmail author
Genomics, transcriptomics, proteomics

Abstract

Aeration diffusers in wastewater treatment plants generate air bubbles that promote mixing, distribution of dissolved oxygen, and microbial processing of dissolved and suspended matter in bulk solution. Biofouling of diffusers represents a significant problem to wastewater treatment plants because biofilms decrease oxygen transfer efficiency and increase backpressure on the blower. To better understand biofouling, we conducted a pilot study to survey the bacterial community composition and function of biofilms on different diffuser substrates and compare them to those in the bulk solution. DNA was extracted from the surface of ethylene–propylene-diene monomer (EPDM), polyurethane, and silicone diffusers operated for 15 months in a municipal treatment plant and sampled at 3 and 9 months. The bacterial community composition and function of the biofilms and bulk solution were determined by amplifying the 16S rRNA genes and pyrosequencing the amplicons and raw metagenomic DNA. The ordination plots and dendrograms of the 16S rRNA and functional genes showed that while the bacterial community composition and function of the bulk solution was independent of sampling time, the composition and function of the biofilms differed by diffuser type and testing time. For the EPDM and silicone diffusers, the biofilm communities were more similar in composition to the bulk solution at 3 months than 9 months. In contrast, the bacteria on the polyurethane diffusers were more dissimilar to the bulk solution at 3 months than 9 months. Taken together, the survey showed that the community composition and function of bacterial biofilms depend on the diffuser substrate and testing time, which warrants further elucidation.

Keywords

Next-generation sequencing Wastewater Aeration diffusers Biofouling 

Notes

Compliance with ethical standards

This article does not contain any studies with human participants or animals performed by the authors.

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

253_2016_7604_MOESM1_ESM.pdf (786 kb)
ESM 1 (PDF 785 kb)

References

  1. Ajdic D, Chen Z (2013) A novel phosphotransferase system of Streptococcus mutans is responsible for transport of carbohydrates with α-1,3 linkage. Mol Oral Microbiol 28:114–128. doi: 10.1111/omi.12009 CrossRefPubMedGoogle Scholar
  2. Alvarez H (2010) Biology of Rhodococcus. Springer-Verlag, Berlin ISBN: 978-3-642-12937-7CrossRefGoogle Scholar
  3. Appenzeller BM, Yañez C, Jorand F, Block JC (2005) Advantage provided by iron for Escherichia coli growth and cultivability in drinking water. Appl Environ Microbiol 71:5621–5623CrossRefPubMedPubMedCentralGoogle Scholar
  4. Asvapathanagul P, Huang Z, Gedalanga PB, Baylor A, Olson BH (2012) Interaction of operational and physicochemical factors leading to Gordonia amarae-like foaming in an incompletely nitrifying activated sludge plant. Appl Environ Microbiol 78:8165–8175. doi: 10.1128/AEM.00404-12 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bellou N, Papathanassiou E, Dobretsov S, Lykousis V, Colijn F (2012) The effect of substratum type, orientation and depth on the development of bacterial deep-sea biofilm communities grown on artificial substrata deployed in the Eastern Mediterranean. Biofouling 28:199–213. doi: 10.1080/08927014.2012.662675 CrossRefPubMedGoogle Scholar
  6. Besemer K, Hödl I, Singer G, Battin TJ (2009) Architectural differentiation reflects bacterial community structure in stream biofilms. ISME J 3:1318–1324. doi: 10.1038/ismej.2009.73 CrossRefPubMedGoogle Scholar
  7. Besemer K, Peter H, Logue JB, Langenheder S, Lindström ES, Tranvik LJ, Battin TJ (2012) Unraveling assembly of stream biofilm communities. ISME J 6:1459–1468. doi: 10.1038/ismej.2011.205 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Can I, Javan GT, Pozhitkov AE, Noble PA (2014) Distinctive thanatomicrobiome signatures found in the blood and internal organs of humans. J Microbiol Methods 106:1–7. doi: 10.1016/j.mimet.2014.07.026 CrossRefPubMedGoogle Scholar
  9. Chao A (1987) Estimating the population size for capture-recapture data with unequal catchability. Biometrics 43:783–791CrossRefPubMedGoogle Scholar
  10. Chao A, Lee S-M (1992) Estimating the number of classes via sample coverage. J Am Stat Assoc 87:210–217CrossRefGoogle Scholar
  11. Chung HC, Lee OO, Huang YL, Mok SY, Kolter R, Qian PY (2010) Bacterial community succession and chemical profiles of subtidal biofilms in relation to larval settlement of the polychaete Hydroides elegans. ISME J 4:817–828. doi: 10.1038/ismej.2009.157 CrossRefPubMedGoogle Scholar
  12. Costerton JW, Cheng KJ, Geesey GG, Ladd TI, Nickel JC, Dasgupta M, Marrie TJ (1987) Bacterial biofilms in nature and disease. Annu Rev Microbiol 41:435–464CrossRefPubMedGoogle Scholar
  13. Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322CrossRefPubMedGoogle Scholar
  14. Dang H, Lovell CR (2000) Bacterial primary colonization and early succession on surfaces in marine waters as determined by amplified rRNA gene restriction analysis and sequence analysis of 16S rRNA genes. Appl Environ Microbiol 66:467–475CrossRefPubMedPubMedCentralGoogle Scholar
  15. Donlan RM (2002) Biofilms: microbial life on surfaces. Emerg Infect Dis 8:881–890CrossRefPubMedPubMedCentralGoogle Scholar
  16. Fletcher M (1996) Bacterial adhesion: molecular and ecological diversity, Series in ecological and applied microbiology series, #19. Wiley, Hoboken, NJ, p. 361 ISBN: 978-0-471-02185-8Google Scholar
  17. Garrido-Baserba M, Asvapathanagul P, McCarthy GW, Gocke TE, Olson BH, Park HD, Al-Omari A, Murthy S, Bott CB, Wett B, Smeraldi JD, Shaw AR, Rosso D (2016) Linking biofilm growth to fouling and aeration performance of fine-pore diffuser in activated sludge. Water Res 90:317–328. doi: 10.1016/j.watres.2015.12.011 CrossRefPubMedGoogle Scholar
  18. Hansen G, Estevez MA, Es-Said OS (2004) On the shrinking and hardening of EPDM rubber membranes in water sanitation filtration tanks. Eng Fail Anal 11:361–367. doi: 10.1016/j.engfailanal.2003.06.003 CrossRefGoogle Scholar
  19. Harrison JJ, Ceri H, Turner RJ (2007) Multimetal resistance and tolerance in microbial biofilms. Nat Rev Microbiol 5:928–938. doi: 10.1038/nrmicro1774 CrossRefPubMedGoogle Scholar
  20. Høiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O (2010) Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents 35:322–332. doi: 10.1016/j.ijantimicag.2009.12.011 CrossRefPubMedGoogle Scholar
  21. Jabubowski W, Walkowiak B (2015) Resistance to oxidative stress in biofilm and planktonic cells. Braz Arch Biol Technol 58:300–308. doi: 10.1590/S1516-8913201500356 CrossRefGoogle Scholar
  22. Jackson CR, Churchill PF, Roden EA (2001) Successional changes in bacterial assemblage structure during epilithic biofilm development. Ecology 82:555–566. doi: 10.1890/0012-9658(2001)082[0555:SCIBAS]2.0.CO;2 ISSN: 0012-9658CrossRefGoogle Scholar
  23. Kwon S, Kim TS, Yu GH, Jung JH, Park HD (2010) Bacterial community composition and diversity of a full-scale integrated fixed-film activated sludge system as investigated by pyrosequencing. J Microbiol Biotechnol 20:1717–1723PubMedGoogle Scholar
  24. Lange BM, Rujan T, Martin W, Croteau R (2000) Isoprenoid biosynthesis: the evolution of two ancient and distinct pathways across genomes. Proc Natl Acad Sci U S A 97:13172–13177CrossRefPubMedPubMedCentralGoogle Scholar
  25. Langenheder S, Székely AJ (2011) Species sorting and neutral processes are both important during the initial assembly of bacterial communities. ISME J 5:1086–1094. doi: 10.1038/ismej.2010.207 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Lee SH, Hong TI, Kim B, Hong S, Park HD (2014) Comparison of bacterial communities of biofilms formed on different membrane surfaces. World J Microbiol Biotechnol 30:777–782. doi: 10.1007/s11274-013-1460-8 CrossRefPubMedGoogle Scholar
  27. Leibold MA, Holyoak M, Mouquet N, Amarasekare P, Chase JM, Hoopes MF, Holt RD, Shurin JB, Law R, Tilman D, Loreau M, Gonzalex A (2004) The metacommunity concept: a framework for multi-scale community ecology. Ecol Lett 7:601–613. doi: 10.1111/j.1461-0248.2004.00608.x CrossRefGoogle Scholar
  28. Meier A, Tsaloglou NM, Mowlem MC, Keevil CW, Connelly DP (2013) Hyperbaric biofilms on engineering surfaces formed in the deep sea. Biofouling 29:1029–1042. doi: 10.1080/08927014.2013.824967 CrossRefPubMedGoogle Scholar
  29. Meyer F, Paarmann D, D’Souza M, Olson R, Glass EM, Kubal M, Paczian T, Rodriguez A, Stevens R, Wilke A, Wilkening J, Edwards RA (2008) The metagenomics RAST server—a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinform 9:386. doi: 10.1186/1471-2105-9-386 CrossRefGoogle Scholar
  30. Pozhitkov AE, Leroux BG, Randolph TW, Beikler T, Flemmig TF, Noble PA (2015) Towards microbiome transplant as a therapy for periodontitis: as an exploratory study of periodontitis microbial signature contrasted by oral health, caries and edentulism. BMC Oral Health 15:125. doi: 10.1186/s12903-015-0109-4 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Rashid MH, Rumbaugh K, Passador L, Davies DG, Hamood AN, Iglewski BH, Kornberg A (2000) Polyphosphate kinase is essential for biofilm development, quorum sensing, and virulence of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 97:9636–9641CrossRefPubMedPubMedCentralGoogle Scholar
  32. Reardon DJ (1995) Turning down the power. Civ Eng 65:54–56Google Scholar
  33. Rosso D, Shaw AR. (2015) Framework for Energy Neutral Treatment for the 21st Century through Energy Efficient Aeration. Water Intelligence Online 2015. IWA Publishing. ISSN Online: 1476–1777. ISBN13: 9781780406794, eISBN: 9781780406794Google Scholar
  34. Rosso D, Stenstrom MK, Larson LE (2008a) Aeration of large-scale municipal wastewater treatment plants: state of the art. Water Sci Technol 57:973–978. doi: 10.2166/wst.2008.218 CrossRefPubMedGoogle Scholar
  35. Rosso D, Libra JA, Wiehe W, Stenstrom MK (2008b) Membrane properties change in fine-pore aeration diffusers: full-scale variations of transfer efficiency and headloss. Water Res 42:2640–2648. doi: 10.1016/j.watres.2008.01.014 CrossRefPubMedGoogle Scholar
  36. Saha R, Saha N, Donofrio RS, Bestervelt LL (2013) Microbial siderophores: a mini review. J. Basic Microbiol 53:303–317. doi: 10.1002/jobm.201100552 CrossRefGoogle Scholar
  37. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541. doi: 10.1128/AEM.01541-09
  38. Shannon CE, Weaver W (1984) A mathematical theory of communication. Bell Syst Tech J 27:379–423 and 27:623-656CrossRefGoogle Scholar
  39. Stenstrom MK, Vazirinejad HO, Ng A. (1984) Economic evaluation of upgrading aeration systems. J. Water Pollut Control Fed 56:20–26. http://www.jstor.org/stable/25042152
  40. Wagner M, von Hoessle R (2004) Biological coating of EPDM-membranes of fine bubble diffusers. Water Sci Technol 50:79–85PubMedGoogle Scholar
  41. Weber CF, King GM (2010) Distribution and diversity of carbon monoxide-oxidizing bacteria and bulk bacterial communities across a succession gradient on a Hawaiian volcanic deposit. Environ Microbiol 12:1855–1867. doi: 10.1111/j.1462-2920.2010.02190.x CrossRefPubMedGoogle Scholar
  42. Yang Y, Yang J, Wu W, Zhao J, Song Y, Gao L, Yang R, Jiang L (2015) Biodegradation and mineralization of polystyrene by plastic-eating mealworms. 2. Role of gut microorganisms. Environ Sci Technol 49:12087–12093CrossRefPubMedGoogle Scholar
  43. Yu Z, Mohn WW (1999) Killing two birds with one stone: simultaneous extraction of DNA and RNA from activated sludge biomass. Can J Microbiol 45:269–272. doi: 10.1139/w98-211 CrossRefGoogle Scholar
  44. Zhang WP, Wang Y, Tian RM, Bougouffa S, Yang B, Cao HL, Zhang G, Wong YH, Xu W, Batang Z, Al-Suwailem A, Zhang QPY (2014) Species sorting during biofilm assembly by artificial substrates deployed in a cold seep system. Sci Rep 17:6647. doi: 10.1038/srep06647 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Peter A. Noble
    • 1
    • 2
  • Hee-Deung Park
    • 3
    • 4
  • Betty H. Olson
    • 4
    Email author
  • Pitiporn Asvapathanagul
    • 5
  • M. Colby Hunter
    • 2
  • Manel Garrido-Baserba
    • 4
  • Sang-Hoon Lee
    • 3
  • Diego Rosso
    • 4
    Email author
  1. 1.Department of PeriodonticsUniversity of WashingtonSeattleUSA
  2. 2.PhD Program in MicrobiologyAlabama State UniversityMontgomeryUSA
  3. 3.School of Civil, Environmental and Architectural EngineeringKorea UniversitySeoulSouth Korea
  4. 4.The Henry Samueli School of EngineeringUniversity of California, IrvineIrvineUSA
  5. 5.Civil Engineering and Construction Engineering ManagementCollege of Engineering at California State UniversityLong BeachUSA

Personalised recommendations