Applied Microbiology and Biotechnology

, Volume 100, Issue 14, pp 6141–6148 | Cite as

Interactions between Pseudomonas aeruginosa and Staphylococcus aureus during co-cultivations and polymicrobial infections

  • Angela T. Nguyen
  • Amanda G. Oglesby-Sherrouse


Pseudomonas aeruginosa and Staphylococcus aureus are versatile bacterial pathogens and common etiological agents in polymicrobial infections. Microbial communities containing both of these pathogens are shaped by interactions ranging from parasitic to mutualistic, with the net impact of these interactions in many cases resulting in enhanced virulence. Polymicrobial communities of these organisms are further defined by multiple aspects of the host environment, with important implications for disease progression and therapeutic outcomes. This mini-review highlights the impact of these interactions on the host and individual pathogens, the molecular mechanisms that underlie these interactions, and host-specific factors that drive interactions between these two important pathogens.


Pseudomonas aeruginosa Staphylococcus aureus Cystic fibrosis Polymicrobial infections Alkyl-quinolones 


Compliance with ethical standards

Funding is provided by the University of Maryland School of Pharmacy (to AGO) and NIH training grant T32 GM 066706 (to ATN).

Angela T. Nguyen declares that she has no conflict of interest. Amanda G. Oglesby-Sherrouse declares that she has no conflict of interest. This article does not contain any studies with human participants or animals performed by any of the authors.


  1. Ahlgren HG, Benedetti A, Landry JS, Bernier J, Matouk E, Radzioch D, Lands LC, Rousseau S, Nguyen D (2015) Clinical outcomes associated with Staphylococcus aureus and Pseudomonas aeruginosa airway infections in adult cystic fibrosis patients. BMC Pulm Med 15:67CrossRefPubMedPubMedCentralGoogle Scholar
  2. Baldan R, Cigana C, Testa F, Bianconi I, De Simone M, Pellin D, Di Serio C, Bragonzi A, Cirillo DM (2014) Adaptation of Pseudomonas aeruginosa in cystic fibrosis airways influences virulence of Staphylococcus aureus in vitro and murine models of co-infection. PLoS One 9:e89614CrossRefPubMedPubMedCentralGoogle Scholar
  3. Barnabie PM, Whiteley M (2015) Iron-mediated control of Pseudomonas aeruginosa-Staphylococcus aureus interactions in the cystic fibrosis lung. J Bacteriol 197:2250–2251CrossRefPubMedPubMedCentralGoogle Scholar
  4. Biswas L, Biswas R, Schlag M, Bertram R, Gotz F (2009) Small-colony variant selection as a survival strategy for Staphylococcus aureus in the presence of Pseudomonas aeruginosa. Appl Environ Microbiol 75:6910–6912CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bouvier NM (2016) Cystic fibrosis and the war for iron at the host-pathogen battlefront. Proc Natl Acad Sci 113:1480–1482. doi: 10.1073/pnas.1525101113
  6. Bryan LE, Van Den Elzen HM (1977) Effects of membrane-energy mutations and cations on streptomycin and gentamicin accumulation by bacteria: a model for entry of streptomycin and gentamicin in susceptible and resistant bacteria. Antimicrob Agents Chemother 12:163–177CrossRefPubMedPubMedCentralGoogle Scholar
  7. Carmeli Y, Troillet N, Eliopoulos GM, Samore MH (1999) Emergence of antibiotic-resistant Pseudomonas aeruginosa: comparison of risks associated with different antipseudomonal agents. Antimicrob Agents Chemother 43:1379–1382PubMedPubMedCentralGoogle Scholar
  8. Cassat JE, Skaar EP (2013) Iron in infection and immunity. Cell Host Microbe 13:509–519CrossRefPubMedPubMedCentralGoogle Scholar
  9. Chambers HF, Deleo FR (2009) Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat Rev Microbiol 7:629–641CrossRefPubMedPubMedCentralGoogle Scholar
  10. Costerton JW (2001) Cystic fibrosis pathogenesis and the role of biofilms in persistent infection. Trends Microbiol 9:50–52CrossRefPubMedGoogle Scholar
  11. Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM (1995) Microbial biofilms. Annu Rev Microbiol 49:711–745CrossRefPubMedGoogle Scholar
  12. Dalton T, Dowd SE, Wolcott RD, Sun Y, Watters C, Griswold JA, Rumbaugh KP (2011) An in vivo polymicrobial biofilm wound infection model to study interspecies interactions. PLoS One 6:e27317CrossRefPubMedPubMedCentralGoogle Scholar
  13. DeLeon S, Clinton A, Fowler H, Everett J, Horswill AR, Rumbaugh KP (2014) Synergistic interactions of Pseudomonas aeruginosa and Staphylococcus aureus in an in vitro wound model. Infect Immun 82:4718–4728CrossRefPubMedPubMedCentralGoogle Scholar
  14. Deziel E, Lepine F, Milot S, He J, Mindrinos MN, Tompkins RG, Rahme LG (2004) Analysis of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs) reveals a role for 4-hydroxy-2-heptylquinoline in cell-to-cell communication. Proc Natl Acad Sci U S A 101:1339–1344CrossRefPubMedPubMedCentralGoogle Scholar
  15. Diggle SP, Matthijs S, Wright VJ, Fletcher MP, Chhabra SR, Lamont IL, Kong X, Hider RC, Cornelis P, Camara M, Williams P (2007) The Pseudomonas aeruginosa 4-quinolone signal molecules HHQ and PQS play multifunctional roles in quorum sensing and iron entrapment. Chem Biol 14:87–96CrossRefPubMedGoogle Scholar
  16. Filkins LM, O’Toole GA (2015) Cystic fibrosis lung infections: polymicrobial, complex, and hard to treat. PLoS Pathog 11:e1005258CrossRefPubMedPubMedCentralGoogle Scholar
  17. Filkins LM, Graber JA, Olson DG, Dolben EL, Lynd LR, Bhuju S, O’Toole GA (2015) Co-culture of Staphylococcus aureus with Pseudomonas aeruginosa drives S. aureus towards fermentative metabolism and reduced viability in a cystic fibrosis model. J Bacteriol 197:2252–2264. doi: 10.1128/JB.00059-15
  18. Foundation, Cystic Fibrosis (2014) Patient registry annual data report 2014. Cystic Fibrosis Foundation, BethesdaGoogle Scholar
  19. Fugere A, Lalonde Seguin D, Mitchell G, Deziel E, Dekimpe V, Cantin AM, Frost E, Malouin F (2014) Interspecific small molecule interactions between clinical isolates of Pseudomonas aeruginosa and Staphylococcus aureus from adult cystic fibrosis patients. PLoS One 9:e86705CrossRefPubMedPubMedCentralGoogle Scholar
  20. Gallagher LA, McKnight SL, Kuznetsova MS, Pesci EC, Manoil C (2002) Functions required for extracellular quinolone signaling by Pseudomonas aeruginosa. J Bacteriol 184:6472–6480CrossRefPubMedPubMedCentralGoogle Scholar
  21. Gotz F, Mayer S (2013) Both terminal oxidases contribute to fitness and virulence during organ-specific Staphylococcus aureus colonization. Mbio 4:e00976-13CrossRefPubMedPubMedCentralGoogle Scholar
  22. Hammer ND, Skaar EP (2011) Molecular mechanisms of Staphylococcus aureus iron acquisition. Annu Rev Microbiol 65:129–147CrossRefPubMedGoogle Scholar
  23. Hammer ND, Reniere ML, Cassat JE, Zhang Y, Hirsch AO, Indriati Hood M, Skaar EP (2013) Two heme-dependent terminal oxidases power Staphylococcus aureus organ-specific colonization of the vertebrate host. Mbio 4:e00241-13PubMedPubMedCentralGoogle Scholar
  24. Heeb S, Fletcher MP, Chhabra SR, Diggle SP, Williams P, Camara M (2011) Quinolones: from antibiotics to autoinducers. FEMS Microbiol Rev 35:247–274CrossRefPubMedGoogle Scholar
  25. Hoffman LR, Deziel E, D’Argenio DA, Lepine F, Emerson J, McNamara S, Gibson RL, Ramsey BW, Miller SI (2006) Selection for Staphylococcus aureus small-colony variants due to growth in the presence of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 103:19890–19895CrossRefPubMedPubMedCentralGoogle Scholar
  26. Hubert D, Reglier-Poupet H, Sermet-Gaudelus I, Ferroni A, Le Bourgeois M, Burgel PR, Serreau R, Dusser D, Poyart C, Coste J (2013) Association between Staphylococcus aureus alone or combined with Pseudomonas aeruginosa and the clinical condition of patients with cystic fibrosis. J Cyst Fibros 12:497–503CrossRefPubMedGoogle Scholar
  27. Hunter RC, Asfour F, Dingemans J, Osuna BL, Samad T, Malfroot A, Cornelis P, Newman DK (2013) Ferrous iron is a significant component of bioavailable iron in cystic fibrosis airways. Mbio 4:e00557-13CrossRefPubMedPubMedCentralGoogle Scholar
  28. Huse HK, Kwon T, Zlosnik JEA, Speert DP, Marcotte EM, Whiteley M (2010) Parallel evolution in Pseudomonas aeruginosa over 39,000 generations in vivo. Mbio 1:e00199-10CrossRefPubMedPubMedCentralGoogle Scholar
  29. Konings AF, Martin LW, Sharples KJ, Roddam LF, Latham R, Reid DW, Lamont IL (2013) Pseudomonas aeruginosa uses multiple pathways to acquire iron during chronic infection in cystic fibrosis lungs. Infect Immun 81:2697–2704CrossRefPubMedPubMedCentralGoogle Scholar
  30. Korgaonkar AK, Whiteley M (2011) Pseudomonas aeruginosa enhances production of an antimicrobial in response to N-acetylglucosamine and peptidoglycan. J Bacteriol 193:909–917CrossRefPubMedGoogle Scholar
  31. Korgaonkar A, Trivedi U, Rumbaugh KP, Whiteley M (2013) Community surveillance enhances Pseudomonas aeruginosa virulence during polymicrobial infection. Proc Natl Acad Sci U S A 110:1059–1064CrossRefPubMedGoogle Scholar
  32. Lechner S, Lewis K, Bertram R (2012) Staphylococcus aureus persisters tolerant to bactericidal antibiotics. J Mol Microbiol Biotechnol 22:235–244CrossRefPubMedPubMedCentralGoogle Scholar
  33. Lightbown JW, Jackson FL (1956) Inhibition of cytochrome systems of heart muscle and certain bacteria by the antagonists of dihydrostreptomycin: 2-alkyl-4-hydroxyquinoline N-oxides. Biochem J 63:130–137CrossRefPubMedPubMedCentralGoogle Scholar
  34. Liou TG, Adler FR, Fitzsimmons SC, Cahill BC, Hibbs JR, Marshall BC (2001) Predictive 5-year survivorship model of cystic fibrosis. Am J Epidemiol 153:345–352CrossRefPubMedPubMedCentralGoogle Scholar
  35. Lipuma JJ (2010) The changing microbial epidemiology in cystic fibrosis. Clin Microbiol Rev 23:299–323CrossRefPubMedPubMedCentralGoogle Scholar
  36. Lister PD, Wolter DJ, Hanson ND (2009) Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev 22:582–610CrossRefPubMedPubMedCentralGoogle Scholar
  37. Lowy FD (2003) Antimicrobial resistance: the example of Staphylococcus aureus. J Clin Invest 111:1265–1273CrossRefPubMedPubMedCentralGoogle Scholar
  38. Lyczak JB, Cannon CL, Pier GB (2002) Lung infections associated with cystic fibrosis. Clin Microbiol Rev 15:194–222CrossRefPubMedPubMedCentralGoogle Scholar
  39. Lynch SV, Bruce KD (2013) The cystic fibrosis airway microbiome. Cold Spring Harb Perspect Med 3:a009738CrossRefPubMedPubMedCentralGoogle Scholar
  40. Machan ZA, Taylor GW, Pitt TL, Cole PJ, Wilson R (1992) 2-Heptyl-4-hydroxyquinoline N-oxide, an antistaphylococcal agent produced by Pseudomonas aeruginosa. J Antimicrob Chemother 30:615–623CrossRefPubMedGoogle Scholar
  41. Maresso AW, Schneewind O (2006) Iron acquisition and transport in Staphylococcus aureus. Biometals 19:193–203CrossRefPubMedGoogle Scholar
  42. Marsland BJ, Gollwitzer ES (2014) Host-microorganism interactions in lung diseases. Nat Rev Immunol 14:827–835CrossRefPubMedGoogle Scholar
  43. Martin LW, Reid DW, Sharples KJ, Lamont IL (2011) Pseudomonas siderophores in the sputum of patients with cystic fibrosis. Biometals 24:1059–1067CrossRefPubMedGoogle Scholar
  44. Mashburn LM, Jett AM, Akins DR, Whiteley M (2005) Staphylococcus aureus serves as an iron source for Pseudomonas aeruginosa during in vivo coculture. J Bacteriol 187:554–566CrossRefPubMedPubMedCentralGoogle Scholar
  45. Meyer JM (2000) Pyoverdines: pigments, siderophores and potential taxonomic markers of fluorescent Pseudomonas species. Arch Microbiol 174:135–142CrossRefPubMedGoogle Scholar
  46. Meyer JM, Stintzi A, De Vos D, Cornelis P, Tappe R, Taraz K, Budzikiewicz H (1997) Use of siderophores to type pseudomonads: the three Pseudomonas aeruginosa pyoverdine systems. Microbiology 143(Pt 1):35–43CrossRefPubMedGoogle Scholar
  47. Michelsen CF, Christensen AM, Bojer MS, Hoiby N, Ingmer H, Jelsbak L (2014) Staphylococcus aureus alters growth activity, autolysis, and antibiotic tolerance in a human host-adapted Pseudomonas aeruginosa lineage. J Bacteriol 196:3903–3911CrossRefPubMedPubMedCentralGoogle Scholar
  48. Monod J (1949) The growth of bacterial cultures. Annu Rev Microbiol 3:371–394CrossRefGoogle Scholar
  49. Murray JL, Connell JL, Stacy A, Turner KH, Whiteley M (2014) Mechanisms of synergy in polymicrobial infections. J Microbiol 52:188–199CrossRefPubMedGoogle Scholar
  50. Nairz M, Schroll A, Sonnweber T, Weiss G (2010) The struggle for iron—a metal at the host-pathogen interface. Cell Microbiol 12:1691–1702CrossRefPubMedGoogle Scholar
  51. Nguyen AT, Jones JW, Ruge MA, Kane MA, Oglesby-Sherrouse AG (2015) Iron depletion enhances production of antimicrobials by Pseudomonas aeruginosa. J Bacteriol 197:2265–2275. doi: 10.1128/JB.00072-15
  52. Nguyen AT, O’Neill MJ, Watts AM, Robson CL, Lamont IL, Wilks A, Oglesby-Sherrouse AG (2014) Adaptation of iron homeostasis pathways by a Pseudomonas aeruginosa pyoverdine mutant in the cystic fibrosis lung. J Bacteriol 196:2265–2276. doi: 10.1128/JB.01491-14
  53. Novick RP (2003) Autoinduction and signal transduction in the regulation of staphylococcal virulence. Mol Microbiol 48:1429–1449CrossRefPubMedGoogle Scholar
  54. Ochsner UA, Johnson Z, Vasil ML (2000) Genetics and regulation of two distinct haem-uptake systems, phu and has, in Pseudomonas aeruginosa. Microbiology 146(Pt 1):185–198CrossRefPubMedGoogle Scholar
  55. Ochsner UA, Vasil AI, Vasil ML (1995) Role of the ferric uptake regulator of Pseudomonas aeruginosa in the regulation of siderophores and exotoxin A expression: purification and activity on iron-regulated promoters. J Bacteriol 177:7194–7201PubMedPubMedCentralGoogle Scholar
  56. Otto BR, Verweij-van Vught AM, MacLaren DM (1992) Transferrins and heme-compounds as iron sources for pathogenic bacteria. Crit Rev Microbiol 18:217–233CrossRefPubMedGoogle Scholar
  57. Pan XS, Hamlyn PJ, Talens-Visconti R, Alovero FL, Manzo RH, Fisher LM (2002) Small-colony mutants of Staphylococcus aureus allow selection of gyrase-mediated resistance to dual-target fluoroquinolones. Antimicrob Agents Chemother 46:2498–2506CrossRefPubMedPubMedCentralGoogle Scholar
  58. Pernet E, Guillemot L, Burgel PR, Martin C, Lambeau G, Sermet-Gaudelus I, Sands D, Leduc D, Morand PC, Jeammet L, Chignard M, Wu Y, Touqui L (2014) Pseudomonas aeruginosa eradicates Staphylococcus aureus by manipulating the host immunity. Nat Commun 5:5105CrossRefPubMedGoogle Scholar
  59. Pesci EC, Milbank JB, Pearson JP, McKnight S, Kende AS, Greenberg EP, Iglewski BH (1999) Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 96:11229–11234CrossRefPubMedPubMedCentralGoogle Scholar
  60. Peters BM, Jabra-Rizk MA, O’May GA, Costerton JW, Shirtliff ME (2012) Polymicrobial interactions: impact on pathogenesis and human disease. Clin Microbiol Rev 25:193–213CrossRefPubMedPubMedCentralGoogle Scholar
  61. Price KE, Hampton TH, Gifford AH, Dolben EL, Hogan DA, Morrison HG, Sogin ML, O’Toole GA (2013) Unique microbial communities persist in individual cystic fibrosis patients throughout a clinical exacerbation. Microbiome 1:27CrossRefPubMedPubMedCentralGoogle Scholar
  62. Proctor RA, Kriegeskorte A, Kahl BC, Becker K, Loffler B, Peters G (2014) Staphylococcus aureus small colony variants (SCVs): a road map for the metabolic pathways involved in persistent infections. Front Cell Infect Microbiol 4:99CrossRefPubMedPubMedCentralGoogle Scholar
  63. Proctor RA, von Eiff C, Kahl BC, Becker K, McNamara P, Herrmann M, Peters G (2006) Small colony variants: a pathogenic form of bacteria that facilitates persistent and recurrent infections. Nat Rev Microbiol 4:295–305CrossRefPubMedGoogle Scholar
  64. Quinn RA, Lim YW, Maughan H, Conrad D, Rohwer F, Whiteson KL (2014) Biogeochemical forces shape the composition and physiology of polymicrobial communities in the cystic fibrosis lung. Mbio 5:e00956-13CrossRefPubMedPubMedCentralGoogle Scholar
  65. Rogan MP, Taggart CC, Greene CM, Murphy PG, O’Neill SJ, McElvaney NG (2004) Loss of microbicidal activity and increased formation of biofilm due to decreased lactoferrin activity in patients with cystic fibrosis. J Infect Dis 190:1245–1253CrossRefPubMedGoogle Scholar
  66. Rogers GB, Hoffman LR, Whiteley M, Daniels TW, Carroll MP, Bruce KD (2010) Revealing the dynamics of polymicrobial infections: implications for antibiotic therapy. Trends Microbiol 18:357–364CrossRefPubMedPubMedCentralGoogle Scholar
  67. Sibley CD, Duan K, Fischer C, Parkins MD, Storey DG, Rabin HR, Surette MG (2008) Discerning the complexity of community interactions using a drosophila model of polymicrobial infections. PLoS Pathog 4:e1000184CrossRefPubMedPubMedCentralGoogle Scholar
  68. Skaar EP, Humayun M, Bae T, DeBord KL, Schneewind O (2004) Iron-source preference of Staphylococcus aureus infections. Science 305:1626–1628CrossRefPubMedGoogle Scholar
  69. Stacy A, McNally L, Darch SE, Brown SP, Whiteley M (2016) The biogeography of polymicrobial infection. Nat Rev Microbiol 14:93–105CrossRefPubMedGoogle Scholar
  70. Ster C, Beaudoin F, Diarra MS, Jacques M, Malouin F, Lacasse P (2010) Evaluation of some Staphylococcus aureus iron-regulated proteins as vaccine targets. Vet Immunol Immunopathol 136:311–318CrossRefPubMedGoogle Scholar
  71. Surette MG (2013) The cystic fibrosis lung microbiome. Am Thorac Soc 11:61–65CrossRefGoogle Scholar
  72. Takase H, Nitanai H, Hoshino K, Otani T (2000) Impact of siderophore production on Pseudomonas aeruginosa infections in immunosuppressed mice. Infect Immun 68:1834–1839CrossRefPubMedPubMedCentralGoogle Scholar
  73. Voggu L, Schlag S, Biswas R, Rosenstein R, Rausch C, Gotz F (2006) Microevolution of cytochrome bd oxidase in staphylococci and its implication in resistance to respiratory toxins released by Pseudomonas. J Bacteriol 188:8079–8086CrossRefPubMedPubMedCentralGoogle Scholar
  74. Wang Y, Wilks JC, Danhorn T, Ramos I, Croal L, Newman DK (2011) Phenazine-1-carboxylic acid promotes bacterial biofilm development via ferrous iron acquisition. J Bacteriol 193:3606–3617CrossRefPubMedPubMedCentralGoogle Scholar
  75. Wood TK, Knabel SJ, Kwan BW (2013) Bacterial persister cell formation and dormancy. Appl Environ Microbiol 79:7116–7121CrossRefPubMedPubMedCentralGoogle Scholar
  76. Yang L, Jelsbak L, Marvig RL, Damkiaer S, Workman CT, Rau MH, Hansen SK, Folkesson A, Johansen HK, Ciofu O, Hoiby N, Sommer MO, Molin S (2011) Evolutionary dynamics of bacteria in a human host environment. Proc Natl Acad Sci U S A 108:7481–7486CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Angela T. Nguyen
    • 1
  • Amanda G. Oglesby-Sherrouse
    • 1
    • 2
  1. 1.School of Pharmacy, Department of Pharmaceutical SciencesUniversity of MarylandBaltimoreUSA
  2. 2.School of Medicine, Department of Microbiology and ImmunologyUniversity of MarylandBaltimoreUSA

Personalised recommendations