Applied Microbiology and Biotechnology

, Volume 100, Issue 16, pp 7223–7238 | Cite as

Innate immune response, intestinal morphology and microbiota changes in Senegalese sole fed plant protein diets with probiotics or autolysed yeast

  • S. Batista
  • A. Medina
  • M. A. Pires
  • M. A. Moriñigo
  • K. Sansuwan
  • J. M. O. Fernandes
  • L. M. P. Valente
  • R. O. A. Ozório
Applied microbial and cell physiology


The effects of using plant ingredients in Senegalese sole (Solea senegalensis) diet on immune competence and intestine morphology and microbial ecology are still controversial. Probiotics or immunostimulants can potentially alter the intestinal microbiota in a way that protects fish against pathogens. The current study aimed to examine the intestine histology and microbiota and humoral innate immune response in juvenile sole fed diets with low (35 %) or high (72 %) content of plant protein (PP) ingredients supplemented with a multispecies probiotic bacteria or autolysed yeast. Fish fed the probiotic diet had lower growth performance. Lysozyme and complement activities were significantly higher in fish fed PP72 diets than in their counterparts fed PP35 diets after 17 and 38 days of feeding. At 2 days of feeding, fish fed unsupplemented PP72 showed larger intestine section area and longer villus than fish fed unsupplemented PP35. At 17 days of feeding, fish fed unsupplemented PP72 showed more goblet cells than the other dietary groups, except the group fed yeast supplemented PP35 diet. High dietary PP level, acutely stimulate fish innate immune defence of the fish after 2 and 17 days of feeding. However, this effect does not occur after 73 days of feeding, suggesting a habituation to dietary treatments and/or immunosuppression, with a reduction in the number of the goblet cells. Fish fed for 38 days with diets supplemented with autolysed yeast showed longer intestinal villus. The predominant bacteria found in sole intestine were Vibrio sp. and dietary probiotic supplementation caused a reduction in Vibrio content, regardless of the PP level.


Probiotics Immune status Plant protein ingredients Senegalese sole Intestinal morphology Intestinal microbiota 



We would like to thank to CIIMAR/ICBAS (UP) and FBA (University of Nordland) for the use of the facilities and equipment and for technical support and Mrs. Ligia Lourenço (UTAD) for her histology technical assistance.

Compliance with ethical standards


S. M. G. Batista was supported by FCT – SFRH/BD/76668/2011. This work was also supported by the FCT Projects PEst-OE/AGR/UI0772/2011 and PEst-OE/AGR/UI0772/2014.

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Informed consent

Informed consent was obtained from all individual participants included in the study.


  1. Abelseth TK, Stensvag K, Espelid S, Nygaard R, Ellingsen T, Bogwald J, Dalmo RA (2003) The spotted wolffish (Anarhichas minor Olafsen) complement component C3: isolation, characterisation and tissue distribution. Fish Shellfish Immunol 15:13–27CrossRefPubMedGoogle Scholar
  2. Abu-Elala N, Marzouk M, Moustafa M (2013) Use of different Saccharomyces cerevisiae biotic forms as immune-modulator and growth promoter for Oreochromis niloticus challenged with some fish pathogens. Int J Vet Sci Med 1:21–29CrossRefGoogle Scholar
  3. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410CrossRefPubMedGoogle Scholar
  4. Aly SM, Abdel-Galil Ahmed Y, Abdel-Aziz Ghareeb A, Mohamed MF (2008) Studies on Bacillus subtilis and Lactobacillus acidophilus, as potential probiotics, on the immune response and resistance of Tilapia nilotica (Oreochromis niloticus) to challenge infections. Fish Shellfish Immunol 25:128–136CrossRefPubMedGoogle Scholar
  5. Anderson DP (1992) Immunostimulants, adjuvants, and vaccine carriers in fish: applications to aquaculture. Annu Rev Fish Dis 2:281–307CrossRefGoogle Scholar
  6. AOAC (2006) Official methods of analysis of AOAC International, 18 edn. Maryland, USAGoogle Scholar
  7. Arijo S, Chabrillón M, Díaz-Rosales P, Rico RM, Martínez-Manzanares E, Balebona MC, Toranzo AE, Moriñigo MA (2005) Bacteria isolated from outbreaks affecting cultured sole, Solea senegalensis (Kaup). Bull Eur Assoc Fish Pathol 25:148–154Google Scholar
  8. Austin B, Zhang XH (2006) Vibrio harveyi: a significant pathogen of marine vertebrates and invertebrates. Lett Appl Microbiol 43:119–124CrossRefPubMedGoogle Scholar
  9. Balcázar JL, Blas I, Ruiz-Zarzuela I, Vendrell D, Calvo AC, Márquez I, Gironés O, Muzquiz JL (2007) Changes in intestinal microbiota and humoral immune response following probiotic administration in brown trout (Salmo trutta). Br J Nutr 97:522–527CrossRefPubMedGoogle Scholar
  10. Barde MP, Barde PJ (2012) What to use to express the variability of data: standard deviation or standard error of mean? Perspect Clin Res 3:113–116CrossRefPubMedPubMedCentralGoogle Scholar
  11. Batista S, Ozório R, Kollias S, Dhanasiri A, Lokesh J, Kiron V, LMP V, Fernandes J (2016) Changes in intestinal microbiota, immune- and stress-related transcript levels in Senegalese sole (Solea senegalensis) fed plant ingredients diets intercropped with probiotics or imunostimulants. Aquaculture 458:149–157 CrossRefGoogle Scholar
  12. Batista S, Ramos MA, Cunha S, Barros R, Cristóvão B, Rema P, Pires MA, Valente LMP, Ozório ROA (2014) Immune responses and gut morphology of Senegalese sole (Solea senegalensis, Kaup 1858) fed monospecies and multispecies probiotics. Aquac Nutr 21:625–634CrossRefGoogle Scholar
  13. Bell T, Newman JA, Silverman BW, Turner SL, Lilley AK (2005) The contribution of species richness and composition to bacterial services. Nature 436:1157–1160CrossRefPubMedGoogle Scholar
  14. BS EN 15784:2009 (2009) Animal feeding stuffs. Isolation and enumeration of presumptive Bacillus spp., p 18Google Scholar
  15. BS EN 15786:2009 (2009) Animal feeding stuffs. Isolation and enumeration of Pediococcus spp., p 20Google Scholar
  16. BS EN 15787:2009 (2009) Animal feeding stuffs. Isolation and enumeration of Lactobacillus spp., p 20Google Scholar
  17. BS EN 15788:2009 (2009) Animal feeding stuffs—isolation and enumeration of Enterococcus (E. faecium) spp., p 18Google Scholar
  18. Cabral EM, Bacelar M, Batista S, Castro-Cunha M, Ozório ROA, Valente LMP (2011) Replacement of fishmeal by increasing levels of plant protein blends in diets for Senegalese sole (Solea senegalensis) juveniles. Aquaculture 322-323:74–81CrossRefGoogle Scholar
  19. Cabral EM, Fernandes TJR, Campos SD, Castro-Cunha M, Oliveira MBPP, Cunha LM, Valente LMP (2013) Replacement of fish meal by plant protein sources up to 75% induces good growth performance without affecting flesh quality in ongrowing Senegalese sole. Aquaculture 380-383:130–138CrossRefGoogle Scholar
  20. Cano-Gomez A, Hoj L, Owens L, Andreakis N (2011) Multilocus sequence analysis provides basis for fast and reliable identification of Vibrio harveyi-related species and reveals previous misidentification of important marine pathogens. Syst Appl Microbiol 34:561–565CrossRefPubMedGoogle Scholar
  21. Caspary WF (1992) Physiology and pathophysiology of intestinal absorption. Am J Clin Nutr 55:299S–308SPubMedGoogle Scholar
  22. Chajecka-Wierzchowska W, Zadernowska A, Nalepa B, Sierpinska M, Laniewska-Trokenheim L (2015) Coagulase-negative staphylococci (CoNS) isolated from ready-to-eat food of animal origin–phenotypic and genotypic antibiotic resistance. Food Microbiol 46:222–226CrossRefPubMedGoogle Scholar
  23. Choct M (2009) Managing gut health through nutrition. Br Poult Sci 50:9–15CrossRefPubMedGoogle Scholar
  24. Choi S-H, Yoon T-J (2008) Non-specific immune response of rainbow trout (Oncorhynchus mykiss) by dietary heat-inactivated potential probiotics. Immune Netw 8:67–74CrossRefGoogle Scholar
  25. Costas B, Conceição LEC, Dias J, Novoa B, Figueras A, Afonso A (2011) Dietary arginine and repeated handling increase disease resistance and modulate innate immune mechanisms of Senegalese sole (Solea senegalensis Kaup, 1858). Fish Shellfish Immunol 31:838–847CrossRefPubMedGoogle Scholar
  26. Díaz-Rosales P, Arijo S, Chabrillón M, Alarcón FJ, Tapia-Paniagua ST, Martínez-Manzanares E, Balebona MC, Moriñigo MA (2009) Effects of two closely related probiotics on respiratory burst activity of Senegalese sole (Solea senegalensis, Kaup) phagocytes, and protection against Photobacterium damselae subsp. piscicida. Aquaculture 293:16–21CrossRefGoogle Scholar
  27. Dimitroglou A, Merrifield DL, Carnevali O, Picchietti S, Avella M, Daniels C, Güroy D, Davies SJ (2011) Microbial manipulations to improve fish health and production—a Mediterranean perspective. Fish Shellfish Immunol 30:1–16CrossRefPubMedGoogle Scholar
  28. Efthimiou S (1996) Dietary intake of β-1,3/1,6 glucans in juvenile dentex (Dentex dentex), Sparidae: effects on growth performance, mortalities and non-specific defense mechanisms. J Appl Ichthyol 12:1–7CrossRefGoogle Scholar
  29. Ercolini D (2004) PCR-DGGE fingerprinting: novel strategies for detection of microbes in food. J Microbiol Methods 56:297–314CrossRefPubMedGoogle Scholar
  30. Esteban MA, Cuesta A, Ortuño J, Meseguer J (2001) Immunomodulatory effects of dietary intake of chitin on gilthead seabream (Sparus aurata L.) innate immune system. Fish Shellfish Immunol 11:303–315CrossRefPubMedGoogle Scholar
  31. Ferguson RMW, Merrifield DL, Harper GM, Rawling MD, Mustafa S, Picchietti S, Balcázar JL, Davies SJ (2010) The effect of Pediococcus acidilactici on the gut microbiota and immune status of on-growing red tilapia (Oreochromis niloticus). J Appl Microbiol 109:851–862CrossRefPubMedGoogle Scholar
  32. Gaggìa F, Mattarelli P, Biavati B (2010) Probiotics and prebiotics in animal feeding for safe food production. Int J Food Microbiol 141(Supplement 1):S15–S28CrossRefPubMedGoogle Scholar
  33. García de la Banda I, Lobo C, Chabrillón M, León-Rubio JM, Arijo S, Pazos G, María Lucas L, Moriñigo MÁ (2012) Influence of dietary administration of a probiotic strain Shewanella putrefaciens on Senegalese sole (Solea senegalensis, Kaup 1858) growth, body composition and resistance to Photobacterium damselae subsp piscicida. Aquac Res 43:662–669CrossRefGoogle Scholar
  34. Geay F, Ferraresso S, Zambonino-Infante J, Bargelloni L, Quentel C, Vandeputte M, Kaushik S, Cahu C, Mazurais D (2011) Effects of the total replacement of fish-based diet with plant-based diet on the hepatic transcriptome of two European sea bass (Dicentrarchus labrax) half-sibfamilies showing different growth rates with the plant-based diet. BMC Genomics 12:1–18CrossRefGoogle Scholar
  35. Gomez-Gil B, Soto-Rodriguez S, Garcia-Gasca A, Roque A, Vazquez-Juarez R, Thompson FL, Swings J (2004) Molecular identification of Vibrio harveyi-related isolates associated with diseased aquatic organisms. Microbiology 150:1769–1777CrossRefPubMedGoogle Scholar
  36. Gunther J, Jimenez-Montealegre R (2004) Effect of the probiotic Bacillus subtilis on the growth and food utilization of tilapia (Oreochromis niloticus) and prawn (Macrobrachium rosenbergii) under laboratory conditions. Rev Biol Trop 52:937–943PubMedGoogle Scholar
  37. He S, Zhou Z, Meng K, Zhao H, Yao B, Ringo E, Yoon I (2011) Effects of dietary antibiotic growth promoter and Saccharomyces cerevisiae fermentation product on production, intestinal bacterial community, and nonspecific immunity of hybrid tilapia (Oreochromis niloticus female x Oreochromis aureus male). J Anim Sci 89:84–92CrossRefPubMedGoogle Scholar
  38. Hoseinifar SH, Mirvaghefi A, Merrifield DL (2011) The effects of dietary inactive brewer’s yeast Saccharomyces cerevisiae var. ellipsoideus on the growth, physiological responses and gut microbiota of juvenile beluga (Huso huso). Aquaculture 318:90–94CrossRefGoogle Scholar
  39. Hutchinson TH, Manning MJ (1996) Seasonal trends in serum lysozyme activity and total protein concentration in dab (Limanda limanda L.) sampled from Lyme Bay, U.K. Fish Shellfish Immunol 6:473–482CrossRefGoogle Scholar
  40. ISO 6498:2012 (2012) Animal feeding stuffs - guidelines for sample preparation, p 46Google Scholar
  41. ISO 6887-1:1999 (1999) Microbiology of food and animal feeding stuffs - preparation of test samples, initial suspension and decimal dilutions for microbiological examination - part 1: general rules for the preparation of the initial suspension and decimal dilutions, p 5Google Scholar
  42. ISO-7218:2007 (2007) Microbiology of food and animal feeding stuffs - general requirements and guidance for microbiological examinations, p 66Google Scholar
  43. Jalili R, Tukmechi A, Agh N, Noori F, Ghasemi A (2013) Replacement of dietary fish meal with plant sources in rainbow trout (Oncorhynchus mykiss) effect on growth performance, immune responses, blood indices and disease resistance. Iran J Fish Sci 12:577–591Google Scholar
  44. Kim D-H, Austin B (2006) Innate immune responses in rainbow trout (Oncorhynchus mykiss, Walbaum) induced by probiotics. Fish Shellfish Immunol 21:513–524CrossRefPubMedGoogle Scholar
  45. Kuhlwein H, Emery MJ, Rawling MD, Harper GM, Merrifield DL, Davies SJ (2013) Effects of a dietary beta-(1,3)(1,6)-D-glucan supplementation on intestinal microbial communities and intestinal ultrastructure of mirror carp (Cyprinus carpio L.). J Appl Microbiol 115:1091–1106CrossRefPubMedGoogle Scholar
  46. Kumar R, Mukherjee SC, Ranjan R, Nayak SK (2008) Enhanced innate immune parameters in Labeo rohita (Ham.) following oral administration of Bacillus subtilis. Fish Shellfish Immunol 24:168–172CrossRefPubMedGoogle Scholar
  47. Kuroda M, Yamashita A, Hirakawa H, Kumano M, Morikawa K, Higashide M, Maruyama A, Inose Y, Matoba K, Toh H, Kuhara S, Hattori M, Ohta T (2005) Whole genome sequence of Staphylococcus saprophyticus reveals the pathogenesis of uncomplicated urinary tract infection. Proc Natl Acad Sci USA 102:13272–13277Google Scholar
  48. Lauzon HL, Gudmundsdottir S, Steinarsson A, Oddgeirsson M, Martinsdottir E, Gudmundsdottir BK (2010) Impact of probiotic intervention on microbial load and performance of Atlantic cod (Gadus morhua L.) juveniles. Aquaculture 310:139–144CrossRefGoogle Scholar
  49. Lazado CC, Caipang CMA (2014) Atlantic cod in the dynamic probiotics research in aquaculture. Aquaculture 424-425:53–62CrossRefGoogle Scholar
  50. Li P, Lawrence AL, Castille FL, Gatlin DM (2007) Preliminary evaluation of a purified nucleotide mixture as a dietary supplement for Pacific white shrimp Litopenaeus vannamei (Boone). Aquac Res 38:887–890CrossRefGoogle Scholar
  51. Lin YH, Chen YS, Wu HC, Pan SF, Yu B, Chiang CM, Chiu CM, Yanagida F (2013) Screening and characterization of LAB-produced bacteriocin-like substances from the intestine of grey mullet (Mugil cephalus L.) as potential biocontrol agents in aquaculture. J Appl Microbiol 114:299–307CrossRefPubMedGoogle Scholar
  52. Liu XF, Li Y, Li JR, Cai LY, Li XX, Chen JR, Lyu SX (2015) Isolation and characterisation of Bacillus spp. antagonistic to Vibrio parahaemolyticus for use as probiotics in aquaculture. World J Microbiol Biotechnol 31:795–803CrossRefPubMedGoogle Scholar
  53. Luis-Villasenor I, Voltolina D, Gomez-Gil B, Ascencio F, Campa-Cordova A, Audelo-Naranjo J, Zamudio-Armenta O (2015) Probiotic modulation of the gut bacterial community of juvenile Litopenaeus vannamei challenged with Vibrio parahaemolyticus CAIM 170. Lat Am J Aquat Res 43:766–775Google Scholar
  54. Magnadottir B (2010) Immunological control of fish diseases. Mar Biotechnol 12:361–379CrossRefPubMedGoogle Scholar
  55. Maidak BL, Cole JR, Parker CT Jr, Garrity GM, Larsen N, Li B, Lilburn TG, McCaughey MJ, Olsen GJ, Overbeek R, Pramanik S, Schmidt TM, Tiedje JM, Woese CR (1999) A new version of the RDP (ribosomal database project). Nucleic Acids Res 27:171–173CrossRefPubMedPubMedCentralGoogle Scholar
  56. Manzano M, Iacumin L, Giusto C, Cecchini F, Patthey C, Fontanillas R, Comi G (2012) Utilization of denaturing gradient gel electrophoresis (DGGE) to evaluate the intestinal microbiota of brown trout Salmo trutta fario. J Vet Sci Med Diagn 1:1–6CrossRefGoogle Scholar
  57. Marcel BR (2008) Prebiotics: Concept, Definition, Criteria, Methodologies, and Products. In: Handbook of prebiotics. CRC Press, Boca Raton, New York, pp. 39–68Google Scholar
  58. Martin-Antonio B, Manchado M, Infante C, Zerolo R, Labella A, Alonso C, Borrego JJ (2007) Intestinal microbiota variation in Senegalese sole (Solea senegalensis) under different feeding regimes. Aquac Res 38:1213–1222CrossRefGoogle Scholar
  59. Maynard CL, Elson CO, Hatton RD, Weaver CT (2012) Reciprocal interactions of the intestinal microbiota and immune system. Nature 489:231–241CrossRefPubMedPubMedCentralGoogle Scholar
  60. Merrifield DL, Burnard D, Bradley G, Davies SJ, Baker RTM (2009) Microbial community diversity associated with the intestinal mucosa of farmed rainbow trout (Oncoryhnchus mykiss Walbaum). Aquac Res 40:1064–1072CrossRefGoogle Scholar
  61. Merrifield DL, Dimitroglou A, Foey A, Davies SJ, Baker RTM, Bøgwald J, Castex M, Ringø E (2010) The current status and future focus of probiotic and prebiotic applications for salmonids. Aquaculture 302:1–18CrossRefGoogle Scholar
  62. Munoz-Atienza E, Gomez-Sala B, Araujo C, Campanero C, del Campo R, Hernandez P, Herranz C, Cintas L (2013) Antimicrobial activity, antibiotic susceptibility and virulence factors of lactic acid bacteria of aquatic origin intended for use as probiotics in aquaculture. BMC Microbiol 13:15CrossRefPubMedPubMedCentralGoogle Scholar
  63. Nayak SK (2010) Probiotics and immunity: a fish perspective. Fish Shellfish Immunol 29:2–14CrossRefPubMedGoogle Scholar
  64. Newaj-Fyzul A, Adesiyun AA, Mutani A, Ramsubhag A, Brunt J, Austin B (2007) Bacillus subtilis AB1 controls Aeromonas infection in rainbow trout (Oncorhynchus mykiss, Walbaum). J Appl Microbiol 103:1699–1706CrossRefPubMedGoogle Scholar
  65. Ortuño J, Cuesta A, Rodrı́guez A, Esteban MA, Meseguer J (2002) Oral administration of yeast, Saccharomyces cerevisiae, enhances the cellular innate immune response of gilthead seabream (Sparus aurata L.). Vet Immunol Immunopathol 85:41–50CrossRefPubMedGoogle Scholar
  66. Rawls JF, Samuel BS, Gordon JI (2004) Gnotobiotic zebrafish reveal evolutionarily conserved responses to the gut microbiota. Proc Natl Acad Sci U S A 101:4596–4601CrossRefPubMedPubMedCentralGoogle Scholar
  67. Rico RM, Tapia-Paniagua S, Martínez-Manzanares E, Balebona MC, Moriñigo MA (2008) Characterization of Vibrio harveyi strains recovered from diseased farmed Senegalese sole (Solea senegalensis). J Appl Microbiol 105:752–760CrossRefPubMedGoogle Scholar
  68. Rumsey GL, Winfree RA, Hughes SG (1992) Nutritional value of dietary nucleic acids and purine bases to rainbow trout (Oncorhynchus mykiss). Aquaculture 108:97–110CrossRefGoogle Scholar
  69. Russell PM, Davies SJ, Gouveia A, Tekinay AA (2001) Influence of dietary starch source on liver morphology in juvenile cultured European sea bass (Dicentrarchus labrax L.). Aquac Res 32:306–314CrossRefGoogle Scholar
  70. Sakai M (1999) Current research status of fish immunostimulants. Aquaculture 172:63–92CrossRefGoogle Scholar
  71. Salinas I, Abelli L, Bertoni F, Picchietti S, Roque A, Furones D, Cuesta A, Meseguer J, Esteban MA (2008) Monospecies and multispecies probiotic formulations produce different systemic and local immunostimulatory effects in the gilthead seabream (Sparus aurata L.). Fish Shellfish Immunol 25:114–123CrossRefPubMedGoogle Scholar
  72. Salinas I, Cuesta A, Esteban MA, Meseguer J (2005) Dietary administration of Lactobacillus delbrueckii and Bacillus subtilis, single or combined, on gilthead seabream cellular innate immune responses. Fish Shellfish Immunol 19:67–77CrossRefPubMedGoogle Scholar
  73. Sergelidis D, Abrahim A, Papadopoulos T, Soultos N, Martziou E, Koulourida V, Govaris A, Pexara A, Zdragas A, Papa A (2014) Isolation of methicillin-resistant Staphylococcus spp. from ready-to-eat fish products. Lett Appl Microbiol 59:500–506CrossRefPubMedGoogle Scholar
  74. Shiina A, Itoi S, Washio S, Sugita H (2006) Molecular identification of intestinal microflora in Takifugu niphobles. Comput Biochem Phys D 1:128–132Google Scholar
  75. Silva JMG, Espe M, Conceição LEC, Dias J, Valente LMP (2009) Senegalese sole juveniles (Solea senegalensis Kaup, 1858) grow equally well on diets devoid of fish meal provided the dietary amino acids are balanced. Aquaculture 296:309–317CrossRefGoogle Scholar
  76. Sitjà-Bobadilla A, Peña-Llopis S, Gómez-Requeni P, Médale F, Kaushik S, Pérez-Sánchez J (2005) Effect of fish meal replacement by plant protein sources on non-specific defence mechanisms and oxidative stress in gilthead sea bream (Sparus aurata). Aquaculture 249:387–400CrossRefGoogle Scholar
  77. Siwicki AK, Anderson DP, Rumsey GL (1994) Dietary intake of immunostimulants by rainbow trout affects non-specific immunity and protection against furunculosis. Vet Immunol Immunopathol 41:125–139CrossRefPubMedGoogle Scholar
  78. Standen BT, Rodiles A, Peggs DL, Davies SJ, Santos GA, Merrifield DL (2015) Modulation of the intestinal microbiota and morphology of tilapia, Oreochromis niloticus, following the application of a multi-species probiotic. Appl Microbiol Biotechnol 99:8403–8417CrossRefPubMedGoogle Scholar
  79. Sun YZ, Yang HL, Ma RL, Song K, Lin WY (2011) Molecular analysis of autochthonous microbiota along the digestive tract of juvenile grouper Epinephelus coioides following probiotic Bacillus pumilus administration. J Appl Microbiol 110:1093–1103CrossRefPubMedGoogle Scholar
  80. Sunyer J, Tort L (1995) Natural hemolytic and bactericidal activities of sea bream Sparus aurata serum are effected by the alternative complement pathway. Vet Immunol Immunopathol 45:333–345CrossRefPubMedGoogle Scholar
  81. Taoka Y, Maeda H, Jo J-Y, Jeon M-J, Bai SC, Lee W-J, Yuge K, Koshio S (2006) Growth, stress tolerance and non-specific immune response of Japanese flounder Paralichthys olivaceus to probiotics in a closed recirculating system. Fish Sci 72:310–321CrossRefGoogle Scholar
  82. Tapia-Paniagua S, Chabrillón M, Díaz-Rosales P, Banda IG, Lobo C, Balebona MC, Moriñigo MA (2010) Intestinal microbiota diversity of the flat fish Solea senegalensis (Kaup, 1858) following probiotic administration. Microb Ecol 60:310–319CrossRefPubMedGoogle Scholar
  83. Tapia-Paniagua ST, Vidal S, Lobo C, García de la Banda I, Esteban MA, Balebona MC, Moriñigo MA (2015) Dietary administration of the probiotic SpPdp11: effects on the intestinal microbiota and immune-related gene expression of farmed Solea senegalensis treated with oxytetracycline. Fish Shellfish Immunol 46:449–458CrossRefPubMedGoogle Scholar
  84. Tuohy KM, Rouzaud GC, Bruck WM, Gibson GR (2005) Modulation of the human gut microflora towards improved health using prebiotics-assessment of efficacy. Curr Pharm Des 11:75–90CrossRefPubMedGoogle Scholar
  85. Waché Y, Auffray F, Gatesoupe F-J, Zambonino J, Gayet V, Labbé L, Quentel C (2006) Cross effects of the strain of dietary Saccharomyces cerevisiae and rearing conditions on the onset of intestinal microbiota and digestive enzymes in rainbow trout, Onchorhynchus mykiss, fry. Aquaculture 258:470–478CrossRefGoogle Scholar
  86. Wu HJ, Sun LB, Li CB, Li ZZ, Zhang Z, Wen XB, Hu Z, Zhang YL, Li SK (2014) Enhancement of the immune response and protection against Vibrio parahaemolyticus by indigenous probiotic Bacillus strains in mud crab (Scylla paramamosain). Fish Shellfish Immunol 41:156–162CrossRefPubMedGoogle Scholar
  87. Yachi S, Loreau M (1999) Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc Natl Acad Sci 96:1463–1468CrossRefPubMedPubMedCentralGoogle Scholar
  88. Zhang H, Li Y, Xu K, Wu J, Dai Z (2015) Microbiological changes and biodiversity of cultivable indigenous bacteria in Sanbao larger yellow croaker (Pseudosciaena crocea), a Chinese salted and fermented seafood. J Food Sci 80:M776–M781CrossRefPubMedGoogle Scholar
  89. Zorrilla I, Arijo S, Chabrillon M, Diaz P, Martinez-Manzanares E, Balebona MC, Moriñigo MA (2003) Vibrio species isolated from diseased farmed sole, Solea senegalensis (Kaup), and evaluation of the potential virulence role of their extracellular products. J Fish Dis 26:103–108CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • S. Batista
    • 1
    • 2
    • 3
  • A. Medina
    • 4
  • M. A. Pires
    • 5
  • M. A. Moriñigo
    • 4
  • K. Sansuwan
    • 2
    • 6
  • J. M. O. Fernandes
    • 3
  • L. M. P. Valente
    • 1
    • 2
  • R. O. A. Ozório
    • 1
    • 2
  1. 1.ICBAS – Instituto de Ciências Biomédicas de Abel SalazarUniversidade de PortoPortoPortugal
  2. 2.CIMAR/CIIMAR – Centro Interdisciplinar de Investigação Marinha e AmbientalPortoPortugal
  3. 3.FBA - Faculty of Biosciences and AquacultureNord UniversityBodøNorway
  4. 4.Department of Microbiology, Faculty of SciencesUniversity of MálagaMálagaSpain
  5. 5.CECAV – Centro de Ciência Animal e Veterinária, UTADVila RealPortugal
  6. 6.Department of Aquaculture, Faculty of FisheriesKasetsart UniversityBangkokThailand

Personalised recommendations