Applied Microbiology and Biotechnology

, Volume 100, Issue 18, pp 7957–7976 | Cite as

Community proteomics provides functional insight into polyhydroxyalkanoate production by a mixed microbial culture cultivated on fermented dairy manure

  • Andrea J. Hanson
  • Nicholas M. Guho
  • Andrzej J. Paszczynski
  • Erik R. Coats
Biotechnological products and process engineering

Abstract

Polyhydroxyalkanoates (PHAs) are bio-based, biodegradable polyesters that can be produced from organic-rich waste streams using mixed microbial cultures (MMCs). To maximize PHA production, MMCs are enriched for bacteria with a high polymer storage capacity through the application of aerobic dynamic feeding (ADF) in a sequencing batch reactor (SBR), which consequently induces a feast-famine metabolic response. Though the feast-famine response is generally understood empirically at a macro-level, the molecular level is less refined. The objective of this study was to investigate the microbial community composition and proteome profile of an enriched MMC cultivated on fermented dairy manure. The enriched MMC exhibited a feast-famine response and was capable of producing up to 40 % (wt. basis) PHA in a fed-batch reactor. High-throughput 16S rRNA gene sequencing revealed a microbial community dominated by Meganema, a known PHA-producing genus not often observed in high abundance in enrichment SBRs. The application of the proteomic methods two-dimensional electrophoresis and LC-MS/MS revealed PHA synthesis, energy generation, and protein synthesis prominently occurring during the feast phase, corroborating bulk solution variable observations and theoretical expectations. During the famine phase, nutrient transport, acyl-CoA metabolism, additional energy generation, and housekeeping functions were more pronounced, informing previously under-determined MMC functionality under famine conditions. During fed-batch PHA production, acetyl-CoA acetyltransferase and PHA granule-bound phasin proteins were in increased abundance relative to the SBR, supporting the higher PHA content observed. Collectively, the results provide unique microbial community structural and functional insight into feast-famine PHA production from waste feedstocks using MMCs.

Keywords

Aerobic dynamic feeding (ADF) Feast-famine response Polyhydroxyalkanoates (PHAs) Volatile fatty acids (VFAs) Gel-based microbial community proteomics LC-MS/MS Illumina sequencing 

Notes

Acknowledgments

The authors acknowledge Dr. Armando McDonald at the University of Idaho for the use of GC-MS. The authors acknowledge Mr. Dan New and Dr. Alida Gerritsen at the Institute for Bioinformatics and Evolutionary Studies Genomics Resources Core at the University of Idaho, and Dr. Matt Settles at the Bioinformatics Core at the Genome Center at the University of California-Davis for the technical assistance related to the 16S rRNA gene sequencing and bioinformatics analysis. The authors acknowledge Dr. Lee Deobald at the Mass Spectrometry Core at the University of Idaho for the technical assistance related to the LC-MS/MS proteomic analysis.

Compliance with ethical standards

Funding

This material is based on work supported by the National Science Foundation under Grant Number CBET-0950498, the Environmental Protection Agency Science to Achieve Results Fellowship Program, and the National Institute of General Medical Sciences from the National Institutes of Health P30 GM103324. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the funding agency.

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

253_2016_7576_MOESM1_ESM.pdf (14.1 mb)
ESM 1 (PDF 14464 kb)

References

  1. Abram F, Enright AM, O’Reilly J, Botting CH, Collins G, O’Flaherty V (2011) A metaproteomic approach gives functional insights into anaerobic digestion. J Appl Microbiol 110(6):1550–1560. doi: 10.1111/j.1365-2672.2011.05011.x CrossRefPubMedGoogle Scholar
  2. Albuquerque MGE, Eiroa M, Torres C, Nunes BR, Reis MAM (2007) Strategies for the development of a side stream process for polyhydroxyalkanoate (PHA) production from sugar cane molasses. J Biotechnol 130(4):411–421. doi: 10.1016/j.jbiotech.2007.05.011 CrossRefPubMedGoogle Scholar
  3. Albuquerque MGE, Torres CAV, Reis MAM (2010) Polyhydroxyalkanoate (PHA) production by a mixed microbial culture using sugar molasses: effect of the influent substrate concentration on culture selection. Water Res 44(11):3419–3433. doi: 10.1016/j.watres.2010.03.021 CrossRefPubMedGoogle Scholar
  4. Albuquerque MGE, Carvalho G, Kragelund C, Silva AF, Crespo MTB, Reis MAM, Nielsen PH (2013) Link between microbial composition and carbon substrate-uptake preferences in a PHA-storing community. ISME J 7(1):1–12. doi: 10.1038/ismej.2012.74 CrossRefPubMedGoogle Scholar
  5. Bannerjee D, Sanders LE, Sokatch JR (1970) Properties of purified methylmalonate semialdehyde dehydrogenase of Pseudomonas aeruginosa. J Biol Chem 245(7):1828–1835PubMedGoogle Scholar
  6. Bansal R, Deobald LA, Crawford RL, Paszczynski AJ (2009) Proteomic detection of proteins involved in perchlorate and chlorate metabolism. Biodegradation 20(5):603–620. doi: 10.1007/s10532-009-9248-0 CrossRefPubMedGoogle Scholar
  7. Bengtsson S, Werker A, Christensson M, Welander T (2008) Production of polyhydroxyalkanoates by activated sludge treating a paper mill wastewater. Bioresour Technol 99(3):509–516. doi: 10.1016/j.biortech.2007.01.020 CrossRefPubMedGoogle Scholar
  8. Bengtsson S, Pisco AR, Johansson P, Lemos PC, Reis MAM (2010a) Molecular weight and thermal properties of polyhydroxyalkanoates produced from fermented sugar molasses by open mixed cultures. J Biotechnol 147(3–4):172–179. doi: 10.1016/j.jbiotec.2010.03.022 CrossRefPubMedGoogle Scholar
  9. Bengtsson S, Pisco AR, Reis MAM, Lemos PC (2010b) Production of polyhydroxyalkanoates from fermented sugar cane molasses by a mixed culture enriched in glycogen accumulating organisms. J Biotechnol 145(3):253–263. doi: 10.1016/j.jbiotec.2009.11.016 CrossRefPubMedGoogle Scholar
  10. Beun JJ, Dircks K, Van Loosdrecht MCM, Heijnen JJ (2002) Poly-β-hydroxybutyrate metabolism in dynamically fed mixed microbial cultures. Water Res 36(5):1167–1180. doi: 10.1016/S0043-1354(01)00317-7 CrossRefPubMedGoogle Scholar
  11. Brigham CJ, Speth DR, Rha C, Sinskey AJ (2012) Whole-genome microarray and gene deletion studies reveal regulation of the polyhydroxyalkanoate production cycle by the stringent response in Ralstonia eutropha H16. Appl Environ Microbiol 78(22):8033–8044. doi: 10.1128/aem.01693-12 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Carvalho G, Oehmen A, Albuquerque MG, Reis MA (2013) The relationship between mixed microbial culture composition and PHA production performance from fermented molasses. New Biotechnol. doi: 10.1016/j.nbt.2013.08.010 Google Scholar
  13. Checinska A, Burbank M, Paszczynski AJ (2012) Protection of Bacillus pumilus spores by catalases. Appl Environ Microbiol 78(18):6413–6422. doi: 10.1128/aem.01211-12 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Chiancone E, Ceci P, Ilari A, Ribacchi F, Stefanini S (2004) Iron and proteins for iron storage and detoxification. Biometals 17(3):197–202. doi: 10.1023/B:BIOM.0000027692.24395.76 CrossRefPubMedGoogle Scholar
  15. Coats ER, Gregg M, Crawford RL (2011) Effect of organic loading and retention time on dairy manure fermentation. Bioresour Technol 102(3):2572–2577. doi: 10.1016/j.biortech.2010.11.108 CrossRefPubMedGoogle Scholar
  16. Dai J, Gliniewicz K, Settles ML, Coats ER, McDonald AG (2015) Influence of organic loading rate and solid retention time on polyhydroxybutyrate production from hybrid poplar hydrolysates using mixed microbial cultures. Bioresour Technol 175:23–33. doi: 10.1016/j.biortech.2014.10.049 CrossRefPubMedGoogle Scholar
  17. Dekoning G (1995) Physical-properties of bacterial poly((R)-3-hydroxyalkanoates). Can J Microbiol 41:303–309. doi: 10.1139/m95-201 CrossRefGoogle Scholar
  18. Dias JM, Lemos PC, Serafim LS, Oliveira C, Eiroa M, Albuquerque MG, Ramos AM, Oliveira R, Reis MA (2006) Recent advances in polyhydroxyalkanoate production by mixed aerobic cultures: from the substrate to the final product. Macromol Biosci 6(11):885–906. doi: 10.1002/mabi.200600112 CrossRefPubMedGoogle Scholar
  19. DiGregorio BE (2009) Biobased performance bioplastic: Mirel. Chem Biol 16(1):1–2. doi: 10.1016/j.chembiol.2009.01.001 CrossRefPubMedGoogle Scholar
  20. Dionisi D, Majone M, Papa V, Beccari M (2004) Biodegradable polymers from organic acids by using activated sludge enriched by aerobic periodic feeding. Biotechnol Bioeng 85(6):569–579. doi: 10.1002/bit.10910 CrossRefPubMedGoogle Scholar
  21. Dionisi D, Carucci G, Papini MP, Riccardi C, Majone M, Carrasco F (2005) Olive oil mill effluents as a feedstock for production of biodegradable polymers. Water Res 39(10):2076–2084. doi: 10.1016/j.watres.2005.03.011 CrossRefPubMedGoogle Scholar
  22. Dobroth ZT, Hu S, Coats ER, McDonald AG (2011) Polyhydroxybutyrate synthesis on biodiesel wastewater using mixed microbial consortia. Bioresour Technol 102(3):3352–3359. doi: 10.1016/j.biortech.2010.11.053 CrossRefPubMedGoogle Scholar
  23. Eaton AD, Clesceri LS, Rice EW, Greenberg AE (2005) Standard methods for the examination of water & wastewater. 21st edGoogle Scholar
  24. Ferenci T (1999) Regulation by nutrient limitation. Curr Opin Microbiol 2(2):208–213. doi: 10.1016/S1369-5274(99)80036-8 CrossRefPubMedGoogle Scholar
  25. Hanreich A, Schimpf U, Zakrzewski M, Schlueter A, Benndorf D, Heyer R, Rapp E, Puehler A, Reichl U, Klocke M (2013) Metagenome and metaproteome analyses of microbial communities in mesophilic biogas-producing anaerobic batch fermentations indicate concerted plant carbohydrate degradation. Syst Appl Microbiol 36(5):330–338. doi: 10.1016/j.syapm.2013.03.006 CrossRefPubMedGoogle Scholar
  26. Hanson AJ, Paszczynski AJ, Coats ER (2016) Proteomic profiling of an undefined microbial consortium cultured in fermented dairy manure: methods development. Electrophoresis:n/a-n/a. doi: 10.1002/elps.201500400 Google Scholar
  27. Hayashi S-I, Lin ECC (1967) Purification and properties of glycerol kinase from Escherichia coli. J Biol Chem 242(5):1030–1035PubMedGoogle Scholar
  28. Henze M, Gujer W, Mino T, Matsuo T, Wentzel MC, Marais GR (1995) Wastewater and biomass characterization for the Activated Sludge Model No. 2: biological phosphorus removal. Water Sci Technol 31(2):13–23. doi: 10.1016/0273-1223(95)00176-N CrossRefGoogle Scholar
  29. Hill TCJ, Walsh KA, Harris JA, Moffett BF (2003) Using ecological diversity measures with bacterial communities. FEMS Microbiol Ecol 43(1):1–11. doi: 10.1111/j.1574-6941.2003.tb01040.x CrossRefPubMedGoogle Scholar
  30. Holmsgaard PN, Norman A, Hede SC, Poulsen PHB, Al-Soud WA, Hansen LH, Sørensen SJ (2011) Bias in bacterial diversity as a result of Nycodenz extraction from bulk soil. Soil Biol Biochem 43(10):2152–2159. doi: 10.1016/j.soilbio.2011.06.019 Google Scholar
  31. Jehmlich N, Kleinsteuber S, Vogt C, Benndorf D, Harms H, Schmidt F, von Bergen M, Seifert J (2010) Phylogenetic and proteomic analysis of an anaerobic toluene-degrading community. J Appl Microbiol 109(6):1937–1945. doi: 10.1111/j.1365-2672.2010.04823.x CrossRefPubMedGoogle Scholar
  32. Jiang Y, Marang L, Kleerebezem R, Muyzer G, van Loosdrecht MCM (2011) Polyhydroxybutyrate production from lactate using a mixed microbial culture. Biotechnol Bioeng 108(9):2022–2035. doi: 10.1002/bit.23148 CrossRefPubMedGoogle Scholar
  33. Jiang Y, Marang L, Tamis J, van Loosdrecht MCM, Dijkman H, Kleerebezem R (2012) Waste to resource: converting paper mill wastewater to bioplastic. Water Res 46(17):5517–5530. doi: 10.1016/j.watres.2012.07.028 CrossRefPubMedGoogle Scholar
  34. Johnson K, Jiang Y, Kleerebezem R, Muyzer G, van Loosdrecht MCM (2009) Enrichment of a mixed bacterial culture with a high polyhydroxyalkanoate storage capacity. Biomacromolecules 10(4):670–676. doi: 10.1021/bm8013796 CrossRefPubMedGoogle Scholar
  35. Keshavarz T, Roy I (2010) Polyhydroxyalkanoates: bioplastics with a green agenda. Curr Opin Microbiol 13(3):321–326. doi: 10.1016/j.mib.2010.02.006 CrossRefPubMedGoogle Scholar
  36. Khurana S, Sanli G, Powers DB, Anderson S, Blaber M (2000) Molecular modeling of substrate binding in wild-type and mutant Corynebacteria 2,5-diketo-D-gluconate reductases. Proteins 39(1):68–75. doi: 10.1002/(SICI)1097-0134(20000401)39:1<68::AID-PROT7>3.0.CO;2-Y CrossRefPubMedGoogle Scholar
  37. Koch A (1990) Diffusion The crucial process in many aspects of the biology of bacteria. In: Marshall KC (ed) Advances in microbial ecology. Advances in microbial ecology, vol 11. Springer US, pp 37–70Google Scholar
  38. Koch AL (1997) Microbial physiology and ecology of slow growth. Microbiol Mol Biol R 61(3):305–318Google Scholar
  39. Konopka A (2000) Microbial physiological state at low growth rate in natural and engineered ecosystems. Curr Opin Microbiol 3(3):244–247. doi: 10.1016/S1369-5274(00)00083-7 CrossRefPubMedGoogle Scholar
  40. Kragelund C, Nielsen JL, Thomsen TR, Nielsen PH (2005) Ecophysiology of the filamentous Alphaproteobaeterium Meganema perideroedes in activated sludge. FEMS Microbiol Ecol 54(1):111–122. doi: 10.1016/j.femsec.2005.03.002 CrossRefPubMedGoogle Scholar
  41. Kuchta K, Chi L, Fuchs H, Poetter M, Steinbuechel A (2007) Studies on the influence of phasins on accumulation and degradation of PHB and nanostructure of PHB granules in Ralstonia eutropha H16. Biomacromolecules 8(2):657–662. doi: 10.1021/bm060912e CrossRefPubMedGoogle Scholar
  42. Kuhn R, Benndorf D, Rapp E, Reichl U, Palese LL, Pollice A (2011) Metaproteome analysis of sewage sludge from membrane bioreactors. Proteomics 11(13):2738–2744. doi: 10.1002/pmic.201000590 CrossRefPubMedGoogle Scholar
  43. Lawrence AG, Schoenheit J, He A, Tian J, Liu P, Stubbe J, Sinskey AJ (2005) Transcriptional analysis of Ralstonia eutropha genes related to poly-(R)-3-hydroxybutyrate homeostasis during batch fermentation. Appl Microbiol Biotechnol 68(5):663–672. doi: 10.1007/s00253-005-1969-3 CrossRefPubMedGoogle Scholar
  44. Lemos PC, Levantesi C, Serafim LS, Rossetti S, Reis MAM, Tandoi V (2008) Microbial characterisation of polyhydroxyalkanoates storing populations selected under different operating conditions using a cell-sorting RT-PCR approach. Appl Microbiol Biotechnol 78(2):351–360. doi: 10.1007/s00253-007-1301-5 CrossRefPubMedGoogle Scholar
  45. Liang S, Gliniewicz K, Mendes-Soares H, Settles ML, Forney LJ, Coats ER, McDonald AG (2015) Comparative analysis of microbial community of novel lactic acid fermentation inoculated with different undefined mixed cultures. Bioresour Technol 179:268–274. doi: 10.1016/j.biortech.2014.12.032 CrossRefPubMedGoogle Scholar
  46. Liu H-Y, Hall PV, Darby JL, Coats ER, Green PG, Thompson DE, Loge FJ (2008) Production of polyhydroxyalkanoate during treatment of tomato cannery wastewater. Water Environ Res 80(4):367–372. doi: 10.2175/106143007x221535 CrossRefPubMedGoogle Scholar
  47. Magoč T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27(21):2957–2963. doi: 10.1093/bioinformatics/btr507 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Majone M, Massanisso P, Carucci A, Lindrea K, Tandoi V (1996) Influence of storage on kinetic selection to control aerobic filamentous bulking. Water Sci Technol 34(5–6):223–232. doi: 10.1016/0273-1223(96)00649-x CrossRefGoogle Scholar
  49. Majone M, Beccari M, Di Gregorio S, Dionisi D, Vallini G (2006) Enrichment of activated sludge in a sequencing batch reactor for polyhydroxyalkanoate production. Water Sci Technol 54(1):119–128. doi: 10.2166/wst.2006.379 CrossRefPubMedGoogle Scholar
  50. Marang L, Jiang Y, van Loosdrecht MCM, Kleerebezem R (2013) Butyrate as preferred substrate for polyhydroxybutyrate production. Bioresour Technol 142:232–239. doi: 10.1016/j.biortech.2013.05.031 CrossRefPubMedGoogle Scholar
  51. Mezzina MP, Wetzler DE, Almeida A, Dinjaski N, Prieto MA, Pettinari MJ (2015) A phasin with extra talents: a polyhydroxyalkanoate granule-associated protein has chaperone activity. Environ Microbiol 17(5):1765–1776. doi: 10.1111/1462-2920.12636 CrossRefPubMedGoogle Scholar
  52. Morgan-Sagastume F, Karlsson A, Johansson P, Pratt S, Boon N, Lant P, Werker A (2010) Production of polyhydroxyalkanoates in open, mixed cultures from a waste sludge stream containing high levels of soluble organics, nitrogen and phosphorus. Water Res 44(18):5196–5211. doi: 10.1016/j.watres.2010.06.043 CrossRefPubMedGoogle Scholar
  53. Oehmen A, Pinto FV, Silva V, Albuquerque MGE, Reis MAM (2014) The impact of pH control on the volumetric productivity of mixed culture PHA production from fermented molasses. Eng Life Sci 14(2):143–152. doi: 10.1002/elsc.201200220 CrossRefGoogle Scholar
  54. Patrauchan MA, Miyazawa D, LeBlanc JC, Aiga C, Florizone C, Dosanjh M, Davies J, Eltis LD, Mohn WW (2012) Proteomic analysis of survival of Rhodococcus jostii RHA1 during carbon starvation. Appl Environ Microbiol 78(18):6714–6725. doi: 10.1128/AEM.01293-12 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Pötter M, Steinbüchel A (2005) Poly(3-hydroxybutyrate) granule-associated proteins: impacts on poly(3-hydroxybutyrate) synthesis and degradation. Biomacromolecules 6(2):552–560. doi: 10.1021/bm049401n CrossRefPubMedGoogle Scholar
  56. Pötter M, Müller H, Reinecke F, Wieczorek R, Fricke F, Bowien B, Friedrich B, Steinbüchel A (2004) The complex structure of polyhydroxybutyrate (PHB) granules: four orthologous and paralogous phasins occur in Ralstonia eutropha. Microbiology 150(Pt 7):2301–2311. doi: 10.1099/mic.0.26970-0 CrossRefPubMedGoogle Scholar
  57. Queiros D, Rossetti S, Serafim LS (2014) PHA production by mixed cultures: a way to valorize wastes from pulp industry. Bioresour Technol 157:197–205. doi: 10.1016/j.biortech.2014.01.099 CrossRefPubMedGoogle Scholar
  58. Reis MAM, Serafim LS, Lemos PC, Ramos AM, Aguiar FR, Van Loosdrecht MCM (2003) Production of polyhydroxyalkanoates by mixed microbial cultures. Bioproc Biosyst Eng 25(6):377–385. doi: 10.1007/s00449-003-0322-4 CrossRefGoogle Scholar
  59. Roels JA (1983) Energetics and kinetics in biotechnology. Elsevier Biomedical Press, AmsterdamGoogle Scholar
  60. Ruth K, de Roo G, Egli T, Ren Q (2008) Identification of two acyl-CoA synthetases from Pseudomonas putida GPo1: one is located at the surface of polyhydroxyalkanoates granules. Biomacromolecules 9(6):1652–1659. doi: 10.1021/bm8001655 CrossRefPubMedGoogle Scholar
  61. Serafim LS, Lemos PC, Oliveira R, Reis MAM (2004) Optimization of polyhydroxybutyrate production by mixed cultures submitted to aerobic dynamic feeding conditions. Biotechnol Bioeng 87(2):145–160. doi: 10.1002/bit.20085 CrossRefPubMedGoogle Scholar
  62. Serafim LS, Lemos PC, Albuquerque MGE, Reis MAM (2008) Strategies for PHA production by mixed cultures and renewable waste materials. Appl Microbiol Biotechnol 81(4):615–628. doi: 10.1007/s00253-008-1757-y CrossRefPubMedGoogle Scholar
  63. Shevchenko A, Tomas H, Havlis J, Olsen JV, Mann M (2006) In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 1(6):2856–2860. doi: 10.1038/nprot.2006.468 CrossRefPubMedGoogle Scholar
  64. Smit AM, Strabala TJ, Peng L, Rawson P, Lloyd-Jones G, Jordan TW (2012) Proteomic phenotyping of Novosphingobium nitrogenifigens reveals a robust capacity for simultaneous nitrogen fixation, polyhydroxyalkanoate production, and resistance to reactive oxygen species. Appl Environ Microbiol 78(14):4802–4815. doi: 10.1128/AEM.00274-12 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Steinbüchel A, Pieper U (1992) Production of a copolyester of 3-hydroxybutyric acid and 3-hydroxyvaleric acid from single unrelated carbon sources by a mutant of Alcaligenes eutrophus. Appl Microbiol Biotechnol 37(1):1–6. doi: 10.1007/BF00174193 CrossRefGoogle Scholar
  66. Steinbüchel A, Schlegel HG (1991) Physiology and molecular genetics of poly(β-hydroxyalkanoic acid) synthesis in Alcaligenes eutrophus. Mol Microbiol 5(3):535–542. doi: 10.1111/j.1365-2958.1991.tb00725.x CrossRefPubMedGoogle Scholar
  67. Stowe EJ, Coats ER, Brinkman CK (2015) Dairy manure resource recovery utilizing two-stage anaerobic digestion—implications of solids fractionation. Bioresour Technol 198:237–245. doi: 10.1016/j.biortech.2015.09.017 CrossRefPubMedGoogle Scholar
  68. Takagi K, Yamamoto K, Kano K, Ikeda T (2001) New pathway of amine oxidation respiratory chain of Paracoccus denitrificans IFO 12442. Eur J Biochem 268(2):470–476. doi: 10.1046/j.1432-1033.2001.01912.x CrossRefPubMedGoogle Scholar
  69. Tamis J, Lužkov K, Jiang Y, van Loosdrecht MC, Kleerebezem R (2014) Enrichment of Plasticicumulans acidivorans at pilot-scale for PHA production on industrial wastewater. J Biotechnol 192:161–169. doi: 10.1016/j.jbiotec.2014.10.022 CrossRefGoogle Scholar
  70. Textor S, Wendisch VF, De Graaf AA, Muller U, Linder MI, Linder D, Buckel W (1997) Propionate oxidation in Escherichia coli: evidence for operation of a methylcitrate cycle in bacteria. Arch Microbiol 168(5):428–436. doi: 10.1007/s002030050518 CrossRefPubMedGoogle Scholar
  71. Thiede B, Koehler CJ, Strozynski M, Treumann A, Stein R, Zimny-Arndt U, Schmid M, Jungblut PR (2013) High resolution quantitative proteomics of HeLa cells protein species using stable isotope labeling with amino acids in cell culture(SILAC), two-dimensional gel electrophoresis(2DE) and nano-liquid chromatograpohy coupled to an LTQ-OrbitrapMass spectrometer. Mol Cell Proteomics 12(2):529–538. doi: 10.1074/mcp.M112.019372 CrossRefPubMedGoogle Scholar
  72. Thomsen TR, Blackall LL, de Muro MA, Nielsen JL, Nielsen PH (2006) Meganema perideroedes gen. nov., sp nov., a filamentous alphaproteobacterium from activated sludge. Int J Syst Evol Micr 56:1865–1868. doi: 10.1099/ijs.0.02916-0 CrossRefGoogle Scholar
  73. van Loosdrecht MCM, Pot MA, Heijnen JJ (1997) Importance of bacterial storage polymers in bioprocesses. Water Sci Technol 35(1):41–47. doi: 10.1016/s0273-1223(96)00877-3 CrossRefGoogle Scholar
  74. VerBerkmoes NC, Denef VJ, Hettich RL, Banfield JF (2009) Systems biology: functional analysis of natural microbial consortia using community proteomics. Nat Rev Microbiol 7(3):196–205. doi: 10.1038/nrmicro2080 CrossRefPubMedGoogle Scholar
  75. Vizcaino JA, Cote RG, Csordas A, Dianes JA, Fabregat A, Foster JM, Griss J, Alpi E, Birim M, Contell J, O’Kelly G, Schoenegger A, Ovelleiro D, Perez-Riverol Y, Reisinger F, Rios D, Wang R, Hermjakob H (2013) The PRoteomics IDEntifications (PRIDE) database and associated tools: status in 2013. Nucleic Acids Res 41(Database issue):D1063–D1069. doi: 10.1093/nar/gks1262 CrossRefPubMedGoogle Scholar
  76. Waller JL, Green PG, Loge FJ (2012) Mixed-culture polyhydroxyalkanoate production from olive oil mill pomace. Bioresour Technol 120:285–289. doi: 10.1016/j.biortech.2012.06.024 CrossRefPubMedGoogle Scholar
  77. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73(16):5261–5267. doi: 10.1128/aem.00062-07 CrossRefPubMedPubMedCentralGoogle Scholar
  78. White D (2007) The Physiology and Biochemistry of Prokaryotes, 3rd edn. Oxford University PressGoogle Scholar
  79. Wieczorek R, Pries A, Steinbüchel A, Mayer F (1995) Analysis of a 24-kilodalton protein associated with the polyhydroxyalkanoic acid granules in Alcaligenes eutrophus. J Bacteriol 177(9):2425–2435PubMedPubMedCentralGoogle Scholar
  80. Wilmes P, Bond PL (2004) The application of two-dimensional polyacrylamide gel electrophoresis and downstream analyses to a mixed community of prokaryotic microorganisms. Environ Microbiol 6(9):911–920. doi: 10.1111/j.1462-2920.2004.00687.x CrossRefPubMedGoogle Scholar
  81. Wilmes P, Bond PL (2009) Microbial community proteomics: elucidating the catalysts and metabolic mechanisms that drive the Earth’s biogeochemical cycles. Curr Opin Microbiol 12(3):310–317. doi: 10.1016/j.mib.2009.03.004 CrossRefPubMedGoogle Scholar
  82. Wilmes P, Wexler M, Bond PL (2008) Metaproteomics provides functional insight into activated sludge wastewater treatment. PLoS One 3(3):e1778. doi: 10.1371/journal.pone.0001778 CrossRefPubMedPubMedCentralGoogle Scholar
  83. Zhou Z, Meng F, He X, Chae SR, An Y, Jia X (2015) Metaproteomic analysis of biocake proteins to understand membrane fouling in a submerged membrane bioreactor. Environ Sci Technol 49(2):1068–1077. doi: 10.1021/es504489r CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Andrea J. Hanson
    • 1
  • Nicholas M. Guho
    • 2
  • Andrzej J. Paszczynski
    • 3
  • Erik R. Coats
    • 2
  1. 1.Department of Biological SciencesUniversity of IdahoMoscowUSA
  2. 2.Department of Civil EngineeringUniversity of IdahoMoscowUSA
  3. 3.Food Research CenterUniversity of Idaho and Washington State University School of Food ScienceMoscowUSA

Personalised recommendations