Applied Microbiology and Biotechnology

, Volume 100, Issue 12, pp 5301–5312 | Cite as

Electrochemical immunosensors for Salmonella detection in food

  • Airis Maria Araújo MeloEmail author
  • Dalila L. Alexandre
  • Roselayne F. Furtado
  • Maria F. Borges
  • Evânia Altina T. Figueiredo
  • Atanu Biswas
  • Huai N. Cheng
  • Carlúcio R. Alves


Pathogen detection is a critical point for the identification and the prevention of problems related to food safety. Failures at detecting contaminations in food may cause outbreaks with drastic consequences to public health. In spite of the real need for obtaining analytical results in the shortest time possible, conventional methods may take several days to produce a diagnosis. Salmonella spp. is the major cause of foodborne diseases worldwide and its absence is a requirement of the health authorities. Biosensors are bioelectronic devices, comprising bioreceptor molecules and transducer elements, able to detect analytes (chemical and/or biological species) rapidly and quantitatively. Electrochemical immunosensors use antibody molecules as bioreceptors and an electrochemical transducer. These devices have been widely used for pathogen detection at low cost. There are four main techniques for electrochemical immunosensors: amperometric, impedimetric, conductometric, and potentiometric. Almost all types of immunosensors are applicable to Salmonella detection. This article reviews the developments and the applications of electrochemical immunosensors for Salmonella detection, particularly the advantages of each specific technique. Immunosensors serve as exciting alternatives to conventional methods, allowing “real-time” and multiple analyses that are essential characteristics for pathogen detection and much desired in health and safety control in the food industry.


Salmonella Immunosensor Food safety Pathogen Rapid detection 



The authors acknowledge the financial support of the CNPq (Award number: 475174/2012-7) and CAPES Brazilian agencies. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the US Department of Agriculture. USDA is an equal opportunity provider and employer.

Compliance with ethical standards

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Afonso A, Perez-Lopes B, Faria RC, Mattoso L, Hernandez-Herrero M, Roig-Sagues A, Maltez-Da CM, Merkoci A (2013) Electrochemical detection of Salmonella using gold nanoparticles. Biosens Bioelectron 40:121–126CrossRefPubMedGoogle Scholar
  2. Alonso-Lomillo MA, Domínguez-Renedo O, Arcos-Martínez MJ (2010) Screen-printed biosensors in microbiology; a review. Talanta 82:1629–1636CrossRefPubMedGoogle Scholar
  3. Anandan V, Gangadharan R, Zhang G (2009) Role of SAM chain length in enhancing the sensitivity of nanopillar modified electrodes for glucose detection. Sensors 9:1295–1305CrossRefPubMedPubMedCentralGoogle Scholar
  4. Andrews WH, Jacobson A, Hammack T (2015) Food and Drug Administration. Bacteriological Analytical Manual (BAM). Chapter 5 Salmonella Available at: htm (accessed 06.01.16)
  5. Arora P, Sindhu A, Dilbaghi N, Chaudhury A (2011) Biosensors as innovative tools for the detection of food borne pathogens. Biosens Bioelectron 28:1–12CrossRefPubMedGoogle Scholar
  6. Babacan S, Pirarnik P, Letcher S, Rand AG (2000) Evaluation of antibody immobilization methods for piezoelectric biosensor application. Biosens Bioelectron 15:615–621CrossRefPubMedGoogle Scholar
  7. Bally M, Voros J (2009) Nanoscale labels: nanoparticles and liposomes in the development of high-performance biosensors. Nanomed 4:447–467CrossRefGoogle Scholar
  8. Brandão D, Liébana S, Campoy S, Cortés P, Alegret S, Pividori MI (2013) Electrochemical magneto-immunosensing of Salmonella based on nano and micro-sized magnetic particles. J Phys: Conf Series 421(012020):1–7Google Scholar
  9. Brzeska M, Panhorst M, Kamp PB, Schotter J, Reiss G, Pühler A, Becker A, Brückl H (2004) Detection and manipulation of biomolecules by magnetic carriers. J Biotechnol 112:25–33CrossRefPubMedGoogle Scholar
  10. Burcu BE, Kemal SM (2015) Applications of electrochemical immunosensors for early clinical diagnostics. Talanta 132:162–174CrossRefGoogle Scholar
  11. Canbaz MÇ, Sezgintürk MK (2014) Fabrication of a highly sensitive disposable immunosensor based on indium tin oxide substrates for cancer biomarker detection. Anal Biochem 446:9–18CrossRefPubMedGoogle Scholar
  12. Cao Y, Sun X, Guo Y, Zhao W, Wang X (2015) An electrochemical immunosensor based on interdigitated array microelectrode for the detection of chlorpyrifos. Bioprocess Biosyst Eng 38:307–313CrossRefPubMedGoogle Scholar
  13. Centers for Disease Control and Prevention (2012) Pathogens causing US foodborne illnesses, hospitalizations, and deaths, 2000–2008 Accessed 10 December 2015
  14. Chumyim P, Rijiravanich P, Somasundrum M, Surareungchai W (2014) Detection of Salmonella enterica serovar Typhimurium in milk sample using electrochemical immunoassay and enzyme amplified labeling. Int Conf Agric Environ Biol Sci (AEBS-2014) Phuket (Thailand) 24–25Google Scholar
  15. Clark LC Jr, Lyons C (1962) Electrode systems for continuous monitoring in cardiovascular surgery. Am NY Acad Sci 31:29–45Google Scholar
  16. Coen MC, Lehmann R, Groning P, Bielmann M, Galli C, Schlapbach L (2001) Adsorption and bioactivity of protein A on silicon surfaces studies by AFM and XPS. J Colloid Interf Sci 233:180–189CrossRefGoogle Scholar
  17. Croci L, Delibato E, Volpe G, Palleschi G (2001) A rapid electro-chemical ELISA for the detection of Salmonella in meat samples. Anal Lett 34:2597–2607CrossRefGoogle Scholar
  18. Delibato E, Volpe G, Stangalini D, De Medici D, Moscone D, Palleschi G (2006) Development of SYBR-green real-time PCR and a multichannel electrochemical immunosensor for specific detection of Salmonella enterica. Anal Lett 39:1611–1625CrossRefGoogle Scholar
  19. Derkus B, Kc E, Mazi H, Emregul E, Yumak T, Sinag A (2014) Protein a immunosensor for the detection of immunoglobulin G by impedance spectroscopy. Bioprocess Biosyst Eng 37:965–976CrossRefPubMedGoogle Scholar
  20. Dev Das R, Roychaudhuri C, Maju S, Das S, Saha H (2009) Macroporous silicone based simple and eficiente trapping platform for electrical detection of Salmonella Typhimurium pathogens. Biosens Bioelectron 24:3215–3222CrossRefPubMedGoogle Scholar
  21. Dill K, Stanker LH, Young CR (1999) Detection of Salmonella in poultry using a silicon chip-based biosensor. J Biochem Biophys Methods 41:61–67CrossRefPubMedGoogle Scholar
  22. Dominguez-Benetton X, Srikanth S, Satyawali Y, Vanbroekhoven K, Pant D (2013) Enzymatic electrosynthesis: an overview on the progress in enzyme-electrodes for the production of electricity, fuels and chemicals. J Microb Biochem Technol S6:007. doi: 10.4172/1948-5948. S6-007 Google Scholar
  23. Dong J, Xu M, Maa Q, Ai S, Zhao H (2013) A label-free electrochemical impedance immunosensor based on AuNPs/PAMAM-MWCNT-Chi nanocomposite modified glassy carbon electrode for detection of Salmonella Typhimurium in milk. Food Chem 141:1980–1986CrossRefPubMedGoogle Scholar
  24. European Food Safety Agency (2014) EFSA explains zoonotic diseases—Salmonella. Accessed 20 October 2015
  25. Feng P (2010) Rapid methods for detecting foodborne pathogens. In: Food and Drug Administration. Bacteriological Analytical Manual (BAM). Appendix 1. Available at: (accessed 06.12.14)
  26. Ferreira NS, Sales MGF (2014) Disposable immunosensor using a simple method for oriented antibody immobilization for label free real time detection of an oxidative stress biomarker implicated in cancer diseases. Biosens Bioelectron 53:193–199CrossRefPubMedGoogle Scholar
  27. Food and Drug Administration (2012) Bad bug book, foodborne pathogenic microorganisms and natural toxins. Second edition. [Salmonella species, pp. 9–13]Google Scholar
  28. Freitas M, Viswanathan S, Nouws H, Oliveira M, Delerue-Matos C (2014) Iron oxide/gold core/shell nanomagnetic probes and CdS biolabels for amplified electrochemical immunosensing of Salmonella Typhimurium. Biosens Bioelectron 51:195–200CrossRefPubMedGoogle Scholar
  29. Gehring AG, Crawford CG, Mazenko RS, Van Houten LJ, Brewster JD (1996) Enzyme-linked immunomagnetic electrochemical detection of Salmonella Typhimurium. J Immunol Methods 195:15–25CrossRefPubMedGoogle Scholar
  30. Gil ES, Mello GR (2010) Electrochemical biosensors in pharmaceutical analysis. Braz J Pharm Sci 46:375–391CrossRefGoogle Scholar
  31. Hayes JJ, Kennmore M, Badley A, Cullen DC (1998) AFM study of antibody adsorption to polystylene microtitre plates. Nanobiotechnol 4:141–151Google Scholar
  32. Holford TRJ, Davis F, Higson SPJ (2012) Recent trends in antibody based sensors. Biosens Bioelectron 34:12–24CrossRefPubMedGoogle Scholar
  33. Hu CM, Dou W, Zhao G (2014) Enzyme immunosensor based on gold nanoparticles electroposition and streptavidin-biotin system for detection of S. Pullorum & S. Gallinarum. Electrochim Acta 117:239–245Google Scholar
  34. Jaffrezic-Renault N, Dzyadevych SV (2008) Conductometric microbiosensors for environmental monitoring. Sens 8:2569–2588CrossRefGoogle Scholar
  35. Kaur J, Singh KV, Schmid AH, Varshney GC, Suri R, Raje M (2004) Atomic force spectrsocpy-based study of antibody pesticide interactions for characterization of immunosensor surface. Biosens Bioelectron 20:284–293CrossRefPubMedGoogle Scholar
  36. Kim S, Choi SJ (2014) A lipid-based method for the preparation of a piezoelectric DNA biosensor. Anal Biochem 458:1–3CrossRefPubMedGoogle Scholar
  37. Kim G-H, Rand AG, Letcher SV (2003) Impedance characterization of a piezoelectric immunosensor part II: Salmonella Typhimurium detection using magnetic enhancement. Biosens Bioelectron 18:91–99CrossRefPubMedGoogle Scholar
  38. Kirsch J, Siltanen C, Zhou Q, Revzin A, Simonian A (2013) Biosensor technology: recent advances in threat agent detection and medicine. Chem Soc Rev 42:8733–8768CrossRefPubMedGoogle Scholar
  39. Lawrence AJ, Moores GR (1972) Conductimetry in enzyme studies. European J Biochem 24:538–546CrossRefGoogle Scholar
  40. Lee W, Oh B-K, Bae YM, Paek S-H, Lee WH, Choi J-W (2003) Fabrication of self-assembled protein A monolayer and its application as an immunosensor. Biosens Bioelectron 19:185–192CrossRefPubMedGoogle Scholar
  41. Lee K-M, Runyon M, Herrman TJ, Hsieh J, Phillips R (2015) Review of Salmonella detection and identification methods: aspects of rapid emergency response and food safety. Food Control 47:264–276CrossRefGoogle Scholar
  42. Liébana S, Lermo A, Alegret S, Pividori MI, Campoy S, Cortés MP (2009) Rapid detection of Salmonella in milk by electrochemical magneto-immunosensing. Biosens Bioelectron 25:510–513CrossRefPubMedGoogle Scholar
  43. Liu Y, Che Y, Li Y (2001) Rapid detection of Salmonella Typhimurium using immunomagnetic separation and immuno-optical sensing method. Sens Actuators: B Chem 72:214–218CrossRefGoogle Scholar
  44. Liu X, Wang X, Zhang J, Feng H, Liu X, Wong DKY (2012) Detection of estradiol at an electrochemical immunosensor with a Cu UPD| DTBP-Protein G scaffold. Biosens Bioelectron 35:56–62CrossRefPubMedGoogle Scholar
  45. Ma X, Jiang Y, Jia F, Chen J, Wang Z, Yu Y (2014) An aptamer-based electrochemical biosensor for the detection of Salmonella. J Microbiol Methods 98:94–98CrossRefPubMedGoogle Scholar
  46. Mantzila AG, Maipa V, Prodromidis MI (2008) Development of a faradaic impedimetric immunosensor for the detection of Salmonella Typhimurium in milk. Anal Chem 80:1169–1175CrossRefPubMedGoogle Scholar
  47. Margot H, Stephan R, Mahony E, Iversen C (2013) Comparison of rapid cultural methods for the detection of Salmonella species. International J Food Microbiol 163:47CrossRefGoogle Scholar
  48. Martín-Yerga D, González-García MB, Costa-García A (2013) Biosensor array based on the in situ detection of quantum dots as electrochemical label. Sens Actuators: B Chem 182:184–189CrossRefGoogle Scholar
  49. Meyer MHF, Hartmann M, Krause H-J, Blankenstein G, Mueller-Chorus B, Oster J, Miethe P, Keusgen M (2007) CRP determination based on a novel magnetic biosensor. Biosens Bioelectron 22:973–979CrossRefPubMedGoogle Scholar
  50. Morales MD, Serra B, Guzmán-Vázquez de Prada A, Reviejo AJ, Pingarrón JM (2007) An electrochemical method for simultaneous detection and identification of Escherichia coli, Staphylococcus aureus and Salmonella Choleraesuis using a glucose oxidase-peroxidase composite biosensor. Analyst 132:572–578CrossRefPubMedGoogle Scholar
  51. Mortari A, Lorenzelli L (2014) Recent sensing technologies for pathogen detection in milk: a review. Biosens Bioelectron 60:8–21CrossRefPubMedGoogle Scholar
  52. Muhammad-Tahir Z, Alocilja EC (2003) A conductometric biosensor for biosecurity. Biosens Bioelectron 18:813–819CrossRefPubMedGoogle Scholar
  53. Murugaiyan S, Ramasamy R, Gopal N (2014) Biosensors in clinical chemistry: an overview. Adv Biomed Res 3:67CrossRefPubMedPubMedCentralGoogle Scholar
  54. Nandakumar S, Woolard SN, Yuan D, Rouse BT, Kumaraguru U (2008) Natural killer cells as novel helpers in anti-herpes simplex virus immune response. J Virol 82:10820–10831CrossRefPubMedPubMedCentralGoogle Scholar
  55. Nandakumar V, Bishop D, Alonas E, Labelle J, Joshi L, Alford TI (2011) A low- cost electrochemical biosensor for rapid bacterial detection. IEEE Sensors J 11:210–216CrossRefGoogle Scholar
  56. Nguyen P-D, Tran TB, Nguyen DTX, Min J (2014) Magnetic silica nanotube-assisted impedimetric immunosensor for the separation and label-free detection of Salmonella Typhimurium. Sens Actuators: B. Chemical 197:314–320CrossRefGoogle Scholar
  57. Niraj MMGASP (2012) Histamine biosensor: a review. Int J Pharm Sci Res 3:4158–4168Google Scholar
  58. Olsen EV, Pathirana ST, Samoylov AM, Barbaree JM, Chin BA, Neely WC, Vodyanoy V (2003) Specific and selective biosensor for Salmonella and its detection in the environment. J Micorbiol Methods 53:273–285CrossRefGoogle Scholar
  59. Özel RE, Ispas C, Ganesana M, Leiter JC, Andreescu S (2014) Glutamate oxidase biosensor based on mixed ceria and titania nanoparticles for the detection of glutamate in hypoxic environments. Biosens Bioelectron 52:397–402CrossRefPubMedGoogle Scholar
  60. Park I-S, Kim W-Y, Kim N (2000) Operational characteristics of an antibody-immobilized QCM system detecting Salmonella spp. Biosens Bioelectron 15:167–172CrossRefPubMedGoogle Scholar
  61. Pathirana ST, Barbaree J, Chin BA, Hartell MG, Neely WC (2000) Rapid and sensitive biosensor for Salmonella. Biosens Bioelectron 15:135–144CrossRefPubMedGoogle Scholar
  62. Pimenta-Martins MG, Furtado RF, Heneine LG, Dias RS, Morges MF, Alves CR (2012) Development of an amperometric immunosensor for detection of Staphylococcal enterotoxin type A in cheese. J Microbiol Methods 91:138–143CrossRefPubMedGoogle Scholar
  63. Pohanka M, Skládal P (2008) Electrochemical biosensors—principles and applications. J Appl Biomed 6:57–64Google Scholar
  64. Pournaras AV, Koraki T, Prodromidis MI (2008) Development of an impedimetric immunosensor based on electropolymerized polytyramine films for the direct detection of Salmonella Typhimurium in pure cultures of type strains and inoculated real samples. Anal Chim Acta 624:301–307CrossRefPubMedGoogle Scholar
  65. Prashar D (2012) Self assembled monolayers—a review. Int J Chem Tech Res 4:258–265Google Scholar
  66. Prodromidis MI (2010) Impedimetric immunosensors—a review. Electrochim Acta 55:4227–4233CrossRefGoogle Scholar
  67. Prusak-Sochaczewski E, Luong JTT, Guilbault GG (1990) Development of a piezoelectric immunosensor for the detection of Salmonella Typhimurium. Enzyme Microbiol Technol 12:173–177CrossRefGoogle Scholar
  68. Purvis D, Leonardova O, Farmakovsky D, Cherkasov V (2003). An ultrasensitive and stable potentiometric immunosensor. Biosens and Bioelectron 18:1385–1390Google Scholar
  69. Qureshi A, Gurbuz Y, Niazi JH (2012) Biosensors for cardiac biomarkers detection: a review.(Report). Sens Actuators: B Chem 171:62–76CrossRefGoogle Scholar
  70. Ricci F, Adornetto G, Palleschi G (2012) A review of experimental aspects of electrochemical immunosensors. Electrochim Acta 84:74–83CrossRefGoogle Scholar
  71. Rickert J, Gopel W, Beck W, Jung G, Heiduschka P (1996) A ‘mixed’ self- assembled monolayer for an impedimetric immunosensor. Biosens Bioelectron 11:757–768CrossRefPubMedGoogle Scholar
  72. Salam F, Tothill IE (2009) Detection of Salmonella Typhimurium using an electrochemical immunosensor. Biosens Bioelectron 24:2630–2636CrossRefPubMedGoogle Scholar
  73. Saleem M (2013) Biosensors a promising future in measurements. IOP Conf. Series: Mater Sci Eng 51(012012):1–10Google Scholar
  74. Si S-H, Li X, Fung Y-S, Zhu D-R (2001) Rapid detection of Salmonella Enteritidis by piezoelectric immunosensor. Microchem J 68:21–27CrossRefGoogle Scholar
  75. Sibai A, Elamri K, Barbier D, Zaffrezic-Renault N, Souteyrand E (1996) Analysis of the polymer-antibody-antigen interaction in a capacitive immunosensor by FTIR difference spectroscopy. Sens actuators: B Chem 31:125–130CrossRefGoogle Scholar
  76. Singh R, Mukherjee MD, Sumana G, Gupta RK, Sood S, Malhotra BD (2014) Biosensors for pathogen detection: a smart approach towards clinical diagnosis. Sens actuators: B Chem 197:385–404CrossRefGoogle Scholar
  77. Skládal P, Kovar D, Krajicek V, Siskova P, Pribyl J, Svabenska E (2013) Electrochemical immunosensors for detection of microorganisms. Int J Electrochem Sci 8:1635–1649Google Scholar
  78. Soto AMG, Jaffari SA, Bone S (2001) Characterisation and optimization of AC conductometric biosensor. Biosens Bioelectron 16:23–29CrossRefGoogle Scholar
  79. Su L, Jia W, Hou C, Lei Y (2011) Microbial biosensors: a review. Biosens and Bioelectron 26:1788–1799CrossRefGoogle Scholar
  80. Vashist SK, Zheng D, Al-Rubeaan K, Luong JHT, Sheu F-S (2011) Advances in carbon nanotube based electrochemical sensors for bioanalytical applications. Biotechnol Adv 29:169–188CrossRefPubMedGoogle Scholar
  81. Velusamy V, Arshak K, Korostynska O, Oliwa K, Adley C (2010) An overview of foodborne pathogen detection: in the perspective of biosensors. Biotechnol Adv 28:232–254CrossRefPubMedGoogle Scholar
  82. Vidal JC, Bonel L, Ezquerra A, Hernandez S, Bertolin JR, Cubel C, Castillo JR (2013) Electrochemical affinity biosensors for detection of mycotoxins: a review. Biosens Bioelectron 49:146–158CrossRefPubMedGoogle Scholar
  83. Vilarino N, Fonfria ES, Louzao MC, Botana LM (2009) Use of biosensors as alternatives to current regulatory methods for marine biotoxins. Sens 9(11):9414CrossRefGoogle Scholar
  84. Vo-Dihn T, Tromberg GD, Griffin KR, Ambrose MJ, Sepaniak MJ, Gardenhire EM (1987) Antibody-based fiber ptics biosensor for the carcinogen benzo (a) pyrene. Appl Spectro Sci 41:735–738CrossRefGoogle Scholar
  85. Wang J (2005) Nanomaterial based electrochemical biosensors. Analyst 130:421–426CrossRefPubMedGoogle Scholar
  86. Wang Y, Ye Z, Ying Y (2012) New trends in impedimetric biosensors for the detection of foodborne pathogenic bacteria. Sensors 12:3449–3471CrossRefPubMedPubMedCentralGoogle Scholar
  87. Wong YYNG, Ng MH, Si SH, Yao SZ, Fung YS (2002) Immunosensor for the differentiation and detection of Salmonella species based on quartz crystal microbalance. Biosens Bioelectron 17:676–684CrossRefPubMedGoogle Scholar
  88. Yang G-J, Huang J-L, Meng W-J, Shen M, Jiao X-A (2009) A reusable capacitive immunosensor for detection of Salmonella spp. based on grafted ethylene diamine and self-assembled gold nanoparticle monolayers. Anal Chim Acta 647:159–166CrossRefPubMedGoogle Scholar
  89. Zhao Y, Zheng Y, Kong R, Xia L, Qu F (2016) Ultrasensitive electrochemical immunosensor based on horseradish peroxidase (HRP)-loaded silica-poly (acrylic acid) brushes for protein biomarker detection. Biosens Bioelectron 75:383–388CrossRefPubMedGoogle Scholar
  90. Zhu D, Yan Y, Lei P, Shen B, Cheng W, Ju H, Ding SJ (2014) A novel electrochemical sensing strategy for rapid and ultrasensitive detection of Salmonella by rolling circle amplification and DNA-AuNPs probe. Anal Chim Acta 846:44–50CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Airis Maria Araújo Melo
    • 1
    Email author
  • Dalila L. Alexandre
    • 1
  • Roselayne F. Furtado
    • 2
  • Maria F. Borges
    • 2
  • Evânia Altina T. Figueiredo
    • 3
  • Atanu Biswas
    • 4
  • Huai N. Cheng
    • 5
  • Carlúcio R. Alves
    • 1
  1. 1.Department of ChemistryState University of CearáFortalezaBrazil
  2. 2.Embrapa Tropical AgroindustryFortalezaBrazil
  3. 3.Department of Food Science and TechnologyFederal University of CearáFortalezaBrazil
  4. 4.USDA Agricultural Research Service, National Center for Agricultural Utilization ResearchPeoriaUSA
  5. 5.USDA Agricultural Research Service, Southern Regional Research CenterNew OrleansUSA

Personalised recommendations