Advertisement

Applied Microbiology and Biotechnology

, Volume 100, Issue 15, pp 6767–6777 | Cite as

Characterization of biosurfactants produced by Lactobacillus spp. and their activity against oral streptococci biofilm

  • Eleonora Ciandrini
  • Raffaella Campana
  • Luca Casettari
  • Diego R. Perinelli
  • Laura Fagioli
  • Anita Manti
  • Giovanni Filippo Palmieri
  • Stefano Papa
  • Wally Baffone
Applied microbial and cell physiology

Abstract

Lactic acid bacteria (LAB) can interfere with pathogens through different mechanisms; one is the production of biosurfactants, a group of surface-active molecules, which inhibit the growth of potential pathogens. In the present study, biosurfactants produced by Lactobacillus reuteri DSM 17938, Lactobacillus acidophilus DDS-1, Lactobacillus rhamnosus ATCC 53103, and Lactobacillus paracasei B21060 were dialyzed (1 and 6 kDa) and characterized in term of reduction of surface tension and emulsifying activity. Then, aliquots of the different dialyzed biosurfactants were added to Streptococcus mutans ATCC 25175 and Streptococcus oralis ATCC 9811 in the culture medium during the formation of biofilm on titanium surface and the efficacy was determined by agar plate count, biomass analyses, and flow cytometry. Dialyzed biosurfactants showed abilities to reduce surface tension and to emulsifying paraffin oil. Moreover, they significantly inhibited the adhesion and biofilm formation on titanium surface of S. mutans and S. oralis in a dose-dependent way, as demonstrated by the remarkable decrease of cfu/ml values and biomass production. The antimicrobial properties observed for dialyzed biosurfactants produced by the tested lactobacilli opens future prospects for their use against microorganisms responsible of oral diseases.

Keywords

Biosurfactants Lactobacillus Chemical characterization Oral streptococci Biofilm formation percentages 

Notes

Acknowledgments

This work was supported by partial grants from PIO SODALIZIO dei PICENI Foundation (Rome, Italy).

Compliance with ethical standards

Ethical statement

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in the study.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Ahimou F, Jacques P, Deleu M (2000) Surfactin and iturin a effects on Bacillus subtilis surface hydrophobicity. Enzym Microb Technol 27:749–754. doi: 10.1016/S0141-0229(00)00295-7 CrossRefGoogle Scholar
  2. Banat I, Franzetti A, Gandolfi I, Bestetti G, Martinotti M, Fracchia L, Smyth T, Marchant R (2010) Microbial biosurfactants production, applications and future potential. Appl Microbiol Biotechnol 87:427–444. doi: 10.1007/s00253-010-2589-0 CrossRefPubMedGoogle Scholar
  3. Banat IM, Makkar RS, Cameotra SS (2000) Potential commercial applications of microbial surfactants. Appl Microbiol Biotechnol 53:495–508CrossRefPubMedGoogle Scholar
  4. Barbesti S, Citterio S, Labra M, Baroni MD, Neri MG, Sgorbati S (2000) Two and three-color fluorescence flow cytometric analysis of immunoidentified viable bacteria. Cytometry 40:214–218. doi: 10.1002/1097-0320(20000701)40:3<214::AID-CYTO6>3.0.CO;2-M CrossRefPubMedGoogle Scholar
  5. Çaglar E, Cildir SK, Ergeneli S, Sandalli N, Twetman S (2006) Salivary mutans streptococci and lactobacilli levels after ingestion of the probiotic bacterium Lactobacillus reuteri ATCC 55730 by straws or tablets. Acta Odontol Scand 64:314–318. doi: 10.1080/00016350600801709 CrossRefPubMedGoogle Scholar
  6. Çaglar E, Kuscu OO, Cildir SK, Kuvvetli SS, Sandalli N (2008) A probiotic lozenge administered medical device and its effect on salivary mutans streptococci and lactobacilli. Int J Paediatr Dent 18:35–39. doi: 10.1111/j.1365-263X.2007.00866.x PubMedGoogle Scholar
  7. Ciandrini E, Campana R, Federici S, Manti A, Battistelli M, Falcieri E, Papa S, Baffone W (2014) In vitro activity of Carvacrol against titanium-adherent oral biofilms and planktonic cultures. Clin Oral Investig 18:2001–2013. doi: 10.1007/s00784-013-1179-9 CrossRefPubMedGoogle Scholar
  8. Daverey A, Pakshirajan K (2009) Production, characterization, and properties of sophorolipids from the yeast Candida bombicola using a low-cost fermentative medium. Appl Biochem Biotechnol 158:663–674. doi: 10.1007/s12010-008-8449-z CrossRefPubMedGoogle Scholar
  9. Elter C, Heuer W, Demling A, Hannig M, Heidenblut T, Bach F-W, Stiesch-Scholz M (2008) Supra- and subgingival biofilm formation on implant abutments with different surface characteristics. Int J Oral Maxillofac Implants 23:327–334PubMedGoogle Scholar
  10. Francy DS, Thomas JM, Raymond RL, Ward CH (1991) Emulsification of hydrocarbons by subsurface bacteria. J Ind Microbiol 8:237–245. doi: 10.1007/BF01576061 CrossRefGoogle Scholar
  11. Fürst MM, Salvi GE, Lang NP, Persson GR (2007) Bacterial colonization immediately after installation on oral titanium implants. Clin Oral Implants Res 18:501–508. doi: 10.1111/j.1600-0501.2007.01381.x CrossRefPubMedGoogle Scholar
  12. Gomaa EZ (2013) Antimicrobial and anti-adhesive properties of biosurfactant produced by lactobacilli isolates, biofilm formation and aggregation ability. J Gen Appl Microbiol 59:425–436. doi: 10.2323/jgam.59.425 CrossRefGoogle Scholar
  13. Gudiña EJ, Teixeira JA, Rodrigues LR (2010) Isolation and functional characterization of a biosurfactant produced by Lactobacillus paracasei. Colloids Surf B Biointerfaces 76:298–304. doi: 10.1016/j.colsurfb.2009.11.008 CrossRefPubMedGoogle Scholar
  14. Haukioja A, Loimaranta V, Tenovuo J (2008) Probiotic bacteria affect the composition of salivary pellicle and streptococcal adhesion in vitro. Oral Microbiol Immunol 23:336–343. doi: 10.1111/j.1399-302X.2008.00435.x CrossRefPubMedGoogle Scholar
  15. Jalasvuori H, Haukioja A, Tenovuo J (2012) Probiotic Lactobacillus reuteri strains ATCC PTA 5289 and ATCC 55730 differ in their cariogenic properties in vitro. Arch Oral Biol 57:1633–1638. doi: 10.1016/j.archoralbio.2012.07.014 CrossRefPubMedGoogle Scholar
  16. Jeon J-G, Rosalen PL, Falsetta ML, Koo H (2011) Natural products in caries research: current (limited) knowledge, challenges and future perspective. Caries Res 45:243–263CrossRefPubMedPubMedCentralGoogle Scholar
  17. Kim SH, Lim EJ, Lee SO, Lee JD, Lee TH (2000) Purification and characterization of biosurfactants from Nocardia sp. L-417. Biotechnol Appl Biochem 31:249–253CrossRefPubMedGoogle Scholar
  18. Kuiper I, Lagendijk EL, Pickford R, Derrick JP, Lamers GEM, Thomas-Oates JE, Lugtenberg BJJ, Bloemberg GV (2004) Characterization of two Pseudomonas putida lipopeptide biosurfactants, putisolvin I and II, which inhibit biofilm formation and break down existing biofilms. Mol Microbiol 51:97–113. doi: 10.1046/j.1365-2958.2003.03751.x CrossRefPubMedGoogle Scholar
  19. Marttinen A, Haukioja A, Keskin M, Söderling E (2013) Effects of Lactobacillus reuteri PTA 5289 and L. paracasei DSMZ16671 on the adhesion and biofilm formation of Streptococcus mutans. Curr Microbiol 67:193–199. doi: 10.1007/s00284-013-0352-3 CrossRefPubMedGoogle Scholar
  20. Meurman JH, Stamatova I (2011) Lactic acid bacteria in oral health. in: lactic acid bacteria in oral health, lactic acid bacteria: microbiological and functional aspects. CRC Press, pp 403–422Google Scholar
  21. Myers D (2005) Surfactant science and technology, 3rd edn. Wiley, NewyorkCrossRefGoogle Scholar
  22. Nitschke M, Costa SGVAO, Contiero J (2005) Rhamnolipid surfactants: an update on the general aspects of these remarkable biomolecules. Biotechnol Prog 21:1593–1600. doi: 10.1021/bp050239p CrossRefPubMedGoogle Scholar
  23. Ntrouka VI, Slot DE, Louropoulou A, Van der Weijden F (2011) The effect of chemotherapeutic agents on contaminated titanium surfaces: a systematic review. Clin Oral Implants Res 22:681–690. doi: 10.1111/j.1600-0501.2010.02037.x CrossRefPubMedGoogle Scholar
  24. De la Fuente-Núñez C, Reffuveille F, Fernández L, Hancock REW (2013) Bacterial biofilm development as a multicellular adaptation: antibiotic resistance and new therapeutic strategies. Curr Opin Microbiol 16:580–589. doi: 10.1016/j.mib.2013.06.013 CrossRefPubMedGoogle Scholar
  25. Rodrigues L, Banat IM, Teixeira J, Oliveira R (2006a) Biosurfactants: potential applications in medicine. J Antimicrob Chemother 57:609–618. doi: 10.1093/jac/dkl024 CrossRefPubMedGoogle Scholar
  26. Rodrigues LR, Teixeira JA, van der Mei HC, Oliveira R (2006b) Isolation and partial characterization of a biosurfactant produced by Streptococcus thermophilus a. Colloids Surf B Biointerfaces 53:105–112. doi: 10.1016/j.colsurfb.2006.08.009 CrossRefPubMedGoogle Scholar
  27. Saharan BS, Sahu RK, Sharma D (2012) A review on biosurfactants: fermentation, current developments and perspectives. Genet Eng Biotechnol J 1:1–14Google Scholar
  28. Saravanakumari P, Mani K (2010) Structural characterization of a novel xylolipid biosurfactant from Lactococcus lactis and analysis of antibacterial activity against multi-drug resistant pathogens. Bioresour Technol 101:8851–8854. doi: 10.1016/j.biortech.2010.06.104 CrossRefPubMedGoogle Scholar
  29. Sharma D, Saharan BS (2014) Simultaneous production of biosurfactants and bacteriocins by probiotic Lactobacillus casei MRTL3. Int J Microbiol Article ID 698713 . doi: 10.1155/2014/6987137 pages
  30. Sharma D, Saharan B, Chauhan N, Procha S, Lal S (2015) Isolation and functional characterization of novel biosurfactant produced by Enterococcus faecium. SpringerPlus 4:4CrossRefPubMedPubMedCentralGoogle Scholar
  31. Sharma D, Saharan BS, Chauhan N, Bansal A, Procha S (2014) Production and structural characterization of Lactobacillus helveticus derived biosurfactant. Sci World J Article ID:493548 . doi: 10.1155/2014/4935489 pages
  32. Socransky SS, AD H (2002) Dental biofilms: difficult therapeutic targets. Periodontol 2000 28:12–55CrossRefPubMedGoogle Scholar
  33. Söderling E, Marttinen A, Haukioja A (2011) Probiotic lactobacilli interfere with Streptococcus mutans biofilm formation in vitro. Curr Microbiol 62:618–622. doi: 10.1007/s00284-010-9752-9 CrossRefPubMedGoogle Scholar
  34. Spinler JK, Taweechotipatr M, Rognerud CL, Ou CN, Tumwasorn S, Versalovic J (2008) Human-derived probiotic Lactobacillus reuteri demonstrate antimicrobial activities targeting diverse enteric bacterial pathogens. Anaerobe 14:166–171. doi: 10.1016/j.anaerobe.2008.02.001 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Tahmourespour A, Salehi R, Kermanshahi RK (2011) Lactobacillus acidophilus-derived biosurfactant effect on gtfb and gtfc expression level in Streptococcus mutans biofilm cells. Braz J Microbiol 42:330–339CrossRefPubMedPubMedCentralGoogle Scholar
  36. Teanpaisan R, Piwat S, Dahlén G (2011) Inhibitory effect of oral Lactobacillus against oral pathogens. Lett Appl Microbiol 53:452–459. doi: 10.1111/j.1472-765X.2011.03132.x CrossRefPubMedGoogle Scholar
  37. Walencka E, Różalska S, Sadowska B, Różalska B (2008) The influence of Lactobacillus acidophilus-derived surfactants on staphylococcal adhesion and biofilm formation. Folia Microbiol (Praha) 53:61–66. doi: 10.1007/s12223-008-0009-y CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Eleonora Ciandrini
    • 1
  • Raffaella Campana
    • 1
  • Luca Casettari
    • 1
  • Diego R. Perinelli
    • 2
  • Laura Fagioli
    • 1
  • Anita Manti
    • 1
  • Giovanni Filippo Palmieri
    • 2
  • Stefano Papa
    • 1
  • Wally Baffone
    • 1
  1. 1.Department of Biomolecular Sciences, Division of Toxicological, Hygiene and Environmental SciencesUniversity of Urbino “Carlo Bo”UrbinoItaly
  2. 2.School of PharmacyUniversity of CamerinoCamerinoItaly

Personalised recommendations