Advertisement

Applied Microbiology and Biotechnology

, Volume 100, Issue 12, pp 5639–5652 | Cite as

Enrichment of microbial communities tolerant to the ionic liquids tetrabutylphosphonium chloride and tributylethylphosphonium diethylphosphate

  • Sara Pace
  • Shannon J. Ceballos
  • Duff Harrold
  • Whitney Stannard
  • Blake A. Simmons
  • Steven W. Singer
  • Michael P. Thelen
  • Jean S. VanderGheynstEmail author
Bioenergy and biofuels

Abstract

The aims of this study were to identify thermophilic microbial communities that degrade green waste in the presence of the ionic liquids (IL) tetrabutylphosphonium chloride and tributylethylphosphonium diethylphosphate and examine preservation methods for IL-tolerant communities. High-solids incubations with stepwise increases in IL concentration were conducted to enrich for thermophilic IL-tolerant communities that decomposed green waste. 16S rRNA sequencing of enriched communities revealed microorganisms capable of tolerating high levels of IL. Cryogenic preservation of enriched communities reduced the IL tolerance of the community and decreased the relative abundance of IL-tolerant organisms. The use of cryoprotectants did not have an effect on microbial activity on green waste of the stored community. A successful approach was developed to enrich communities that decompose green waste in thermophilic high-solids environments in the presence of IL. Alternative community storage and revival methods are necessary for maintenance and recovery of IL-tolerant communities. The enriched communities provide a targeted source of enzymes for the bioconversion of IL-pretreated green waste for conversion to biofuels.

Keywords

Phosphonium ionic liquids Microbial communities Bioenergy High-solids Pretreatment Storage 

Notes

Compliance with ethical standards

Funding

This work was supported by National Institute of Food and Agriculture project CA-D-BAE-2228-RR, the UC Lab Fees Research Program under project #237496 and completed as part of the Joint BioEnergy Institute, supported by the US Department of Energy, Office of Science, Office of Biological and Environmental Research, through contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the US Department of Energy. Sara Pace and Duff Harrold were partially supported by the NSF GK-12 project under DGE-0948021. Sequencing was conducted by the Joint Genome Institute, which is supported by the Office of Science of the US Department of Energy under Contract DE-AC02-05CH11231.

Conflict of interest

Sara Pace, Shannon J. Ceballos, Duff Harrold, Whitney Stannard, Blake A. Simmons, Steven W. Singer, Michael P. Thelen, and Jean S. VanderGheynst declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

253_2016_7525_MOESM1_ESM.pdf (286 kb)
ESM 1 (PDF 286 kb)

References

  1. Abe M, Fukaya Y, Ohno H (2012) Fast and facile dissolution of cellulose with tetrabutylphosphonium hydroxide containing 40 wt% water. Chem Commun 48(12):1808–1810. doi: 10.1039/C2CC16203B CrossRefGoogle Scholar
  2. California Integrated Waste Management Board (2009) California 2008 statewide waste characterization study. CA.GOV Cal Recycle, p 172Google Scholar
  3. Bray JR, Curtis JT (1957) An ordination of the upland forest communities of Southern Wisconsin. Ecol Monogr 27(4):325–349. doi: 10.2307/1942268 CrossRefGoogle Scholar
  4. Bru-Adan V, Wery N, Moletta-Denat M, Boiron P, Delgenes JP, Godon JJ (2009) Diversity of bacteria and fungi in aerosols during screening in a green waste composting plant. Curr Microbiol 59(3):326–335. doi: 10.1007/s00284-009-9438-3 CrossRefPubMedGoogle Scholar
  5. Clark KR (1993) Non-parametric multivariate analyses of changes in community structure. Aust J Ecol 18:117–143CrossRefGoogle Scholar
  6. Doherty TV, Mora-Pale M, Foley SE, Linhardt RJ, Dordick JS (2010) Ionic liquid solvent properties as predictors of lignocellulose pretreatment efficacy. Green Chem 12(11):1967–1975. doi: 10.1039/C0GC00206B CrossRefGoogle Scholar
  7. Egorova KS, Ananikov VP (2014) Toxicity of ionic liquids: eco (cyto) activity as complicated, but unavoidable parameter for task-specific optimization. ChemSusChem 7(2):336–360CrossRefPubMedGoogle Scholar
  8. Eichorst SA, Joshua C, Sathitsuksanoh N, Singh S, Simmons BA, Singer SW (2014) Substrate-specific development of thermophilic bacterial consortia by using chemically pretreated switchgrass. Appl Environ Microbiol 80(23):7423–7432. doi: 10.1128/AEM.02795-14 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Eichorst SA, Varanasi P, Stavila V, Zemla M, Auer M, Singh S, Simmons BA, Singer SW (2013) Community dynamics of cellulose-adapted thermophilic bacterial consortia. Environ Microbiol 15(9):2573–2587. doi: 10.1111/1462-2920.12159 CrossRefPubMedGoogle Scholar
  10. Gladden JM, Park JI, Bergmann J, Reyes-Ortiz V, D’Haeseleer P, Quirino BF, Sale KL, Simmons BA, Singer SW (2014) Discovery and characterization of ionic liquid-tolerant thermophilic cellulases from a switchgrass-adapted microbial community. Biotechnol Biofuels 7(1):15. doi: 10.1186/1754-6834-7-15 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Ibrahim M, Steinbüchel A (2010) High-cell-density cyclic fed-batch fermentation of a poly(3-hydroxybutyrate)-accumulating thermophile, Chelatococcus sp. strain MW10. Appl Environ Microbiol 76(23):7890–7895CrossRefPubMedPubMedCentralGoogle Scholar
  12. Keskar SS, Edye LA, Doherty WOS, Bartley JP (2011) The chemistry of acid catalyzed delignification of sugarcane bagasse in the ionic liquid trihexyl tetradecyl phosphonium chloride. J Wood Chem Technol 32(1):71–81CrossRefGoogle Scholar
  13. Li C, Cheng G, Balan V, Kent MS, Ong M, Chundawat SPS, Ld S, Melnichenko YB, Dale BE, Simmons BA, Singh S (2011) Influence of physico-chemical changes on enzymatic digestibility of ionic liquid and AFEX pretreated corn stover. Bioresour Technol 102(13):6928–6936. doi: 10.1016/j.biortech.2011.04.005 CrossRefPubMedGoogle Scholar
  14. Liebner S, Rublack K, Stuehrmann T, Wagner D (2009) Diversity of aerobic methanotrophic bacteria in a permafrost active layer soil of the Lena Delta, Siberia. Microb Ecol 57(1):25–35. doi: 10.1007/s00248-008-9411-x CrossRefPubMedGoogle Scholar
  15. Mikkola S-K, Robciuc A, Lokajová J, Holding AJ, Lämmerhofer M, Kilpeläinen I, Holopainen JM, King AWT, Wiedmer SK (2015) Impact of amphiphilic biomass-dissolving ionic liquids on biological cells and liposomes. Environ Sci Technol 49(3):1870–1878CrossRefPubMedGoogle Scholar
  16. Ohno H, Fukumoto K (2007) Amino acid ionic liquids. Acc Chem Res 40(11):1122–1129CrossRefPubMedGoogle Scholar
  17. Panday D, Das S (2010) Chelatococcus sambhunathii sp. nov., a moderately thermophilic alphaproteobacterium isolated from hot spring sediment. Int J Syst Evol Microbiol 60(4):861–865CrossRefPubMedGoogle Scholar
  18. Pielou EC (1969) An introduction to mathematical ecology. Wiley-InterscienceGoogle Scholar
  19. Pourcher A, Sutra L, Hebe II, Moguedet G, Bollet C, Simoneau P, Gardan L (2001) Enumeration and characterization of cellulolytic bacteria from refuse of a landfill. FEMS Microbiol Ecol 34(3):229–241CrossRefPubMedGoogle Scholar
  20. Quijano G, Couvert A, Amrane A (2010) Ionic liquids: applications and future trends in bioreactor technology. Bioresour Technol 101(23):8923–8930. doi: 10.1016/j.biortech.2010.06.161 CrossRefPubMedGoogle Scholar
  21. Reddy AP, Allgaier M, Singer SW, Hazen TC, Simmons BA, Hugenholtz P, VanderGheynst JS (2011) Bioenergy feedstock-specific enrichment of microbial populations during high-solids thermophilic deconstruction. Biotechnol Bioeng 108(9):2088–2098. doi: 10.1002/bit.23176 CrossRefPubMedGoogle Scholar
  22. Reddy AP, Jenkins BM, VanderGheynst JS (2009) The critical moisture range for rapid microbial decomposition of rice straw during storage. Trans ASABE 52(2):673–676CrossRefGoogle Scholar
  23. Reddy AP, Simmons CW, Claypool J, Jabusch L, Burd H, Hadi MZ, Simmons BA, Singer SW, VanderGheynst JS (2012) Thermophilic enrichment of microbial communities in the presence of the ionic liquid 1-ethyl-3-methylimidazolium acetate. J Appl Microbiol 113(6):1362–1370. doi: 10.1111/jam.12002 CrossRefPubMedGoogle Scholar
  24. Rinke R, Costa AS, Fonseca FPP, Henrique-Silva F (2011) Microbial diversity in the larval gut of field and laboratory populations of the sugarcan weevil Sphenophorus levis. Genet Mol Res 10(4):2679–2691CrossRefPubMedGoogle Scholar
  25. Rodríguez-Baño J, Martí S, Soto S, Fernandez-Cuenca F, Cisneros J, Pachon J, Pascual A, Martínez-Martínez L, McQueary C, Actis L, Vila J (2008) Biofilm formation in Acinetobacter baumannii: associated features and clinical implications. Clin Microbiol Infect 14:276–278CrossRefPubMedGoogle Scholar
  26. Samori C, Sciutto G, Pezzolesi L, Galletti P, Guerrini F, Mazzeo R, Pistocchi R, Prati S, Tagliavini E (2011) Effects of imidazolium ionic liquids on growth, photosynthetic efficiency, and cellular components of the diatoms Skeletonema marinoi and Phaeodactylum tricornutum. Chem Res Toxicol 24(3):392–401. doi: 10.1021/tx100343p CrossRefPubMedGoogle Scholar
  27. Shannon C (1948) A mathematical theory of communication. Bell Syst Tech J 27(379–423):623–656CrossRefGoogle Scholar
  28. Simmons BA, Loque D, Blanch HW (2008) Next-generation biomass feedstocks for biofuel production. Genome Biol 9:242CrossRefPubMedPubMedCentralGoogle Scholar
  29. Simmons CW, Claypool JT, Marshall MN, Jabusch LK, Reddy AP, Simmons BA, Singer SW, Stapleton JJ, VanderGheynst JS (2014a) Characterization of bacterial communities in solarized soil amended with lignocellulosic organic matter. Appl Soil Ecol 73(0):97–104. doi: 10.1016/j.apsoil.2013.08.014 CrossRefGoogle Scholar
  30. Simmons CW, Reddy AP, VanderGheynst JS, Simmons BA, Singer SW (2014b) Bacillus coagulans tolerance to 1-ethyl-3-methylimidazolium-based ionic liquids in aqueous and solid-state thermophilic culture. Biotechnol Prog. doi: 10.1002/btpr.1859 Google Scholar
  31. Singh P, Jain MK (1986) Studies on the cellulolytic bacteria and cellulose degradation in a cattle waste-fed biogas digester. Mircen J 2(2):309–317. doi: 10.1007/BF00933497 CrossRefGoogle Scholar
  32. Somerville C, Youngs H, Taylor C, Davis SC, Long SP (2010) Feedstocks for lignocellulosic biofuels. Science 329:790–792CrossRefPubMedGoogle Scholar
  33. Watteau F, Villemin G (2011) Characterization of organic matter microstructure dynamics during co-composting of sewage sludge, barks and green waste. Bioresour Technol 102(19):9313–9317. doi: 10.1016/j.biortech.2011.07.022 CrossRefPubMedGoogle Scholar
  34. Yu C, Reddy AP, Simmons CW, Simmons BA, Singer SW, VanderGheynst JS (2015) Preservation of microbial communities enriched on lignocellulose under thermophilic and high-solid conditions. Biotechnol Biofuels 8(1):206–219. doi: 10.1186/s13068-015-0392-y CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Sara Pace
    • 1
  • Shannon J. Ceballos
    • 1
  • Duff Harrold
    • 1
  • Whitney Stannard
    • 2
  • Blake A. Simmons
    • 3
    • 4
  • Steven W. Singer
    • 3
    • 5
  • Michael P. Thelen
    • 2
    • 3
  • Jean S. VanderGheynst
    • 1
    • 3
    Email author
  1. 1.Department of Biological and Agricultural EngineeringUniversity of CaliforniaDavisUSA
  2. 2.Physical and Life Sciences DirectorateLawrence Livermore National LaboratoryLivermoreUSA
  3. 3.Joint BioEnergy InstituteEmeryvilleUSA
  4. 4.Biological and Materials Science CenterSandia National LaboratoriesLivermoreUSA
  5. 5.Earth Sciences DivisionLawrence Berkeley National LaboratoryBerkeleyUSA

Personalised recommendations