Applied Microbiology and Biotechnology

, Volume 100, Issue 10, pp 4283–4295 | Cite as

Mixed consortia in bioprocesses: role of microbial interactions

  • Shiladitya Ghosh
  • Ranjana ChowdhuryEmail author
  • Pinaki Bhattacharya


The utilization of mixed consortia or mixed culture has become a current research trend of applied microbiology, bioprocess engineering and biotechnology. The constituent microorganisms of such mixed cultures can jointly perform complex processes efficiently, yielding the desired product at an augmented rate, in comparison to monocultures. It is understandable that the interactions between the microbial partners in these mixed cultures are expected to have a significant impact on the combined performance of the microorganisms and the bioprocess as a whole. Prevalence of positive interactions (commensalism or mutualism) among microbial members of a mixed culture or consortia can significantly enhance the product outcome of the bioprocess, ensuring their industrial application and long-term stability. On the contrary, negative interaction (parasitism, predation or ammensalism) leads to elimination of microbial members from the consortia causing the destruction of community structure as well as disruption of cumulative performance. Therefore, a priori knowledge on the type of interaction between the microorganisms is also essential for the optimization of the performance of the designed consortia. This could only be achieved through the study of inter-microbial interaction prevailing in a mixed culture. In the present article, different bioprocess applications of mixed cultures, currently in practice along with types of positive microbial interactions involved, have been reviewed. Complexity of mixed cultures from the perspective of multiple types of intra-culture relationships has been explained in detail. Overall, the necessity for more in-depth research studies on “microbial interaction” in mixed culture bioprocesses has been stressed in the article.


Microbial consortia Bioprocessing Microbial interaction Commensalism Mutualism Strategic design 



The authors sincerely acknowledge Jadavpur University for providing infrastructural facilities and access to subscribed scientific databases required for the preparation of the manuscript. The first author acknowledges the financial support extended by World Bank in the form of technical education quality improvement programme (TEQIP) phase II junior research fellowship. The authors are indebted to the learned reviewers for their valuable comments and suggestions for the improvement of the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interests. The present article does not involve performance of any studies with human or animal participants.


  1. Ahmad V, Iqbal ANMZ, Haseeb M, Khan MS (2014) Antimicrobial potential of bacteriocin producing Lysinibacillus jx416856 against foodborne bacterial and fungal pathogens, isolated from fruits and vegetable waste. Anaerobe 27:87–95. doi: 10.1016/j.anaerobe.2014.04.001 PubMedCrossRefGoogle Scholar
  2. Akinci G, Guven DE (2011) Bioleaching of heavy metals contaminated sediment by pure and mixed cultures of Acidithiobacillus spp. Desalination 268:221–226. doi: 10.1016/j.desal.2010.10.032 CrossRefGoogle Scholar
  3. Arimah BD, Ogunlowo OP, Adebayo MA, Jesumirhewe C (2014) Identification of lactic acid bacteria isolated from selected Nigerian foods and comparison of their bacteriocins activities. Int J Pharm Clin Res 6:20–26Google Scholar
  4. Arora T, Singhm S, Sharma RK (2013) Probiotics: interaction with gut microbiome and antiobesity potential. Nutrition 29:591–596. doi: 10.1016/j.nut.2012.07.017 PubMedCrossRefGoogle Scholar
  5. Assaneo F, Coutinho RM, Lin Y, Mantilla C, Lutscher F (2013) Dynamics and coexistence in a system with intraguild mutualism. Ecol Complex 14:64–74. doi: 10.1016/j.ecocom.2012.10.004 CrossRefGoogle Scholar
  6. Aziza M, Amrane A (2006) Commensalism during submerged mixed culture of Geotrichum candidum and Penicillium camembertii on glutamate and lactate. Process Biochem 41:2452–2457. doi: 10.1016/j.procbio.2006.07.012 CrossRefGoogle Scholar
  7. Bachmann H, Pronk JT, Kleerebezem M, Teusink B (2015) Evolutionary engineering to enhance starter culture performance in food fermentations. Curr Opin Biotechnol 32:1–7. doi: 10.1016/j.copbio.2014.09.003 PubMedCrossRefGoogle Scholar
  8. Bao MT, Wang LN, Sun PY, Cao LX, Zou J, Li YM (2012) Biodegradation of crude oil using an efficient microbial consortium in a simulated marine environment. Marine Poll Bull 64:1177–1185. doi: 10.1016/j.marpolbul.2012.03.020 CrossRefGoogle Scholar
  9. Barragán AM, Cárdenas N, Martínez B, Ruiz-Barba JL, Fernández-Garayzábal JF, Rodríguez JM, Gibello A (2013a) Garvicin A, a Novel Class IId Bacteriocin from Lactococcus garvieae that Inhibits Septum Formation in L. garvieae Strains. Appl Environ Microbiol 79:4336–4346. doi: 10.1128/AEM.00830-13 CrossRefGoogle Scholar
  10. Barragán AM, Guerrero BC, Padrós HL, Ruiz-Barba JL (2013b) Induction of bacteriocin production by coculture is widespread among plantaricin-producing Lactobacillus plantarum strains with different regulatory operons. Food Microbiol 33:40–47. doi: 10.1016/ CrossRefGoogle Scholar
  11. Bernstein HC, Paulson SD, Carlson RP (2012) Synthetic Escherichia coli consortia engineered for syntrophy demonstrate enhanced biomass productivity. J Biotechnol 157:159–166. doi: 10.1016/j.jbiotec.2011.10.001 PubMedPubMedCentralCrossRefGoogle Scholar
  12. Biswas J, Chowdhury R, Bhattacharya P (2006a) Experimental studies and mathematical modeling of a semibatch bio-digester using municipal market waste as feed stock. Ind J Biotechnol 5:498–505Google Scholar
  13. Biswas J, Chowdhury R, Bhattacharya P (2006b) Kinetic studies of biogas generation using municipal waste as feed stock. Enz Microbial Technol 38:493–503. doi: 10.1016/j.enzmictec.2005.07.004 CrossRefGoogle Scholar
  14. Biswas J, Chowdhury R, Bhattacharya P (2007) Mathematical modeling for the prediction of biogas generation characteristics of an anaerobic digester based on food/vegetable residues. Biomass Bioenerg 31:80–86. doi: 10.1016/j.biombioe.2006.06.013 CrossRefGoogle Scholar
  15. Borawska J, Krajnik MM, Darewicz M (2013) The physiological state of Lactoccocus lactis and Propionibacterium freudenreichii strains in co-cultures induced by low temperature and osmotic stress. Afr J Microbiol Res 7:3794–3801. doi: 10.5897/AJMR12.2219 Google Scholar
  16. Brenner K, You L, Arnold FH (2008) Engineering microbial consortia: a new frontier in synthetic biology. Trends Biotechnol 26:483–489. doi: 10.1016/j.tibtech.2008.05.004 PubMedCrossRefGoogle Scholar
  17. Busby RR, Gebhart DL, Strombergera ME, Meiman PJ, Paschke MW (2011) Early seral plant species’ interactions with an arbuscular mycorrhizal fungi community are highly variable. Appl Soil Ecol 48:257–262. doi: 10.1016/j.apsoil.2011.04.014 CrossRefGoogle Scholar
  18. Chakraborty C, Chowdhury R, Bhattacharya P (2011) Experimental studies and mathematical modeling of an up-flow biofilm reactor treating mustard oil rich wastewater. Bioresour Technol 102:5596–5601. doi: 10.1016/j.biortech.2011.02.010 PubMedCrossRefGoogle Scholar
  19. Chandra R, Mohan SV (2014) Enhanced bio-hydrogenesis by co-culturing photosynthetic bacteria with acidogenic process: augmented dark-photo fermentative hybrid system to regulate volatile fatty acid inhibition. Int J Hydrogen Energ 39:7604–7615. doi: 10.1016/j.ijhydene.2014.01.196 CrossRefGoogle Scholar
  20. Chang G, Zhang Z (2014) Functional traits determine formation of mutualism and predation interactions in seed-rodent dispersal system of a subtropical forest. Acta Oecol 55:43–50. doi: 10.1016/j.actao.2013.11.004 CrossRefGoogle Scholar
  21. Chang JJ, Chou CH, Ho CY, Chen WE, Lay JJ, Huang CC (2008) Syntrophic co-culture of aerobic Bacillus and anaerobic Clostridium for bio-fuels and bio-hydrogen production. Int J Hydrogen Energ 33:5137–5146. doi: 10.1016/j.ijhydene.2008.05.021 CrossRefGoogle Scholar
  22. Chen BY, Chen SY, Lin MY, Chang JS (2006) Exploring bioaugmentation strategies for azo-dye decolorization using a mixed consortium of Pseudomonas luteola and Escherichia coli. Process Biochem 41:1574–1581. doi: 10.1016/j.procbio.2006.03.004 CrossRefGoogle Scholar
  23. Chen CY, Bai MD, Chang JS (2013) Improving microalgal oil collecting efficiency by pretreating the microalgal cell wall with destructive bacteria. Biochem Eng J 81:170–176. doi: 10.1016/j.bej.2013.10.014 CrossRefGoogle Scholar
  24. de Amorim ELC, Sader LT, Silva EL (2011) Effect of substrate concentration on dark fermentation hydrogen production using an anaerobic fluidized bed reactor. Appl Biochem Biotechnol 166:1248–1263. doi: 10.1007/s12010-011-9511-9 CrossRefGoogle Scholar
  25. de Souza Pereira Silva D, de Lima Cavalcanti D, de Melo EJV, dos Santos PNF, da Luz ELP, de Gusmao NB, de Fatima Vieira de Queiroz Sousa M (2015) Bio-removal of diesel oil through a microbial consortium isolated from a polluted environment. Int Biodeter Biodegr 97:85–89. doi: 10.1016/j.ibiod.2014.09.021 CrossRefGoogle Scholar
  26. de Vrese M, Laue C, Offick B, Soeth E, Repenning F, Thoß A, Schrezenmeir J (2015) A combination of acid lactase from Aspergillus oryzae and yogurt bacteria improves lactose digestion in lactose maldigesters synergistically: a randomized, controlled, double-blind cross-over trial. Clin Nutr 34:394–399. doi: 10.1016/j.clnu.2014.06.012 PubMedCrossRefGoogle Scholar
  27. Delavenne E, Cliquet S, Trunet C, Barbier G, Mounier J, Le Blay G (2015) Characterization of the antifungal activity of Lactobacillus harbinensis K.V9.3.1 Np and Lactobacillus rhamnosus K.C8.3.1I in yogurt. Food Microbiol 45:10–17. doi: 10.1016/ PubMedCrossRefGoogle Scholar
  28. Garrigues C, Johansen E, Crittenden R (2013) Pangenomics—an avenue to improved industrial starter cultures and probiotics. Curr Opin Biotechnol 24:187–191. doi: 10.1016/j.copbio.2012.08.009 PubMedCrossRefGoogle Scholar
  29. Genitsaris S, Kormas KA, Christaki U, Monchy S, Moustaka-Gouni M (2014) Molecular diversity reveals previously undetected air-dispersed protest colonists in a Mediterranean area. Sci Total Environ 478:70–79. doi: 10.1016/j.scitotenv.2014.01.071 PubMedCrossRefGoogle Scholar
  30. Georgescu P, Zhang H (2014) Lyapunov functionals for two-species mutualisms. Appl Math and Comput 226:754–764. doi: 10.1016/j.amc.2013.10.061 Google Scholar
  31. Giaouris E, Heir E, Hébraud M, Chorianopoulos N, Langsrud S, Møretrø T, Habimana O, Desvaux M, Renier S, Nychas GJ (2014) Attachment and biofilm formation by foodborne bacteria in meat processing environments: causes, implications, role of bacterial interactions and control by alternative novel methods. Meat Sci 97:298–309. doi: 10.1016/j.meatsci.2013.05.023 PubMedCrossRefGoogle Scholar
  32. Golubski AJ, Klausmeier AC (2010) Control in mutualisms: combined implications of partner choice and bargaining roles. J Theo Biol 267:535–545. doi: 10.1016/j.jtbi.2010.09.023 CrossRefGoogle Scholar
  33. Grattepanche JD, Santoferrara LF, McManus GB, Katz LA (2014) Diversity of diversity: conceptual and methodological differences in biodiversity estimates of eukaryotic microbes as compared to bacteria. Trends Microbiol 22:432–437. doi: 10.1016/j.tim.2014.04.006 PubMedCrossRefGoogle Scholar
  34. Gutierrez-Rivera B, Ortiz-Muniz B, Gomez-Rodriguez J, Cardenas-Cagal A, Gonzalez JMD, Aguilar-Uscanga MG (2015) Bioethanol production from hydrolyzed sugarcane bagasse supplemented with molasses “B” in a mixed yeast culture. Renew Energ 74:399–405. doi: 10.1016/j.renene.2014.08.030 CrossRefGoogle Scholar
  35. Hird MJ (2010) Coevolution, Symbiosis and Sociology. Ecol Econ 69:737–742. doi: 10.1016/j.ecolecon.2008.10.011 CrossRefGoogle Scholar
  36. Hooper LV, Falk PG, Gordon JI (2000) Analyzing the molecular foundations of commensalism in the mouse intestine. Curr Opin Microbiol 3:79–85. doi: 10.1016/S1369-5274(99)00055-7 PubMedCrossRefGoogle Scholar
  37. Ivey KL, Hodgson JM, Kerr DA, Thompson PL, Stojceski B, Prince RL (2015) The effect of yoghurt and its probiotics on blood pressure and serum lipid profile; a randomised controlled trial. Nutr Metab Cardiovasc Dis 25:46–51. doi: 10.1016/j.numecd.2014.07.012 PubMedCrossRefGoogle Scholar
  38. Jagmann N, Philipp B (2014) Design of synthetic microbial communities for biotechnological production processes. J Biotechnol 184:209–218. doi: 10.1016/j.jbiotec.2014.05.019 PubMedCrossRefGoogle Scholar
  39. Jahid IK, Han NR, Srey S, Ha SD (2014) Competitive interactions inside mixed-culture biofilms of Salmonella typhimurium and cultivable indigenous microorganisms on lettuce enhance microbial resistance of their sessile cells to ultraviolet C (UV-C) irradiation. Food Res Int 55:445–454. doi: 10.1016/j.foodres.2013.11.042 CrossRefGoogle Scholar
  40. Jain K, Shah V, Chapla D, Madamwar D (2012) Decolorization and degradation of azo dye—Reactive Violet 5R by an acclimatized indigenous bacterial mixed cultures-SB4 isolated from anthropogenic dye contaminated soil. J Hazard Mater 213-214:378–386. doi: 10.1016/j.jhazmat.2012.02.010 PubMedCrossRefGoogle Scholar
  41. Karunya A, Nachiyar CV, Ananth PB, Sunkar S, Jabasingh SA (2014) Development of microbial consortium CN-1 for the degradation of Mordant Black 17. J Environ Chem Eng 2:832–840. doi: 10.1016/j.jece.2014.02.012 CrossRefGoogle Scholar
  42. Khan Z, Jain K, Soni A, Madamwar D (2014) Microaerophilic degradation of sulphonated azo dye e Reactive Red 195 by bacterial consortium AR1 through co-metabolism. Int Biodeter Biodegr 94:167–175. doi: 10.1016/j.ibiod.2014.07.002 CrossRefGoogle Scholar
  43. Kim BH, Ramanan R, Cho DH (2014) Role of Rhizobium, a plant growth promoting bacterium, in enhancing algal biomass through mutualistic interaction. Biomass Bioenerg 69:95–105. doi: 10.1016/j.biombioe.2014.07.015 CrossRefGoogle Scholar
  44. Kleerebezem R, Loosdrecht MCMV (2007) Mixed culture biotechnology for bioenergy production. Curr Opin Biotechnol 18:207–212. doi: 10.1016/j.copbio.2007.05.001 PubMedCrossRefGoogle Scholar
  45. Koch C, Muller S, Harms H, Harnisch F (2014) Microbiomes in bioenergy production: from analysis to management. Curr Opin Biotechnol 27:65–72. doi: 10.1016/j.copbio.2013.11.006 PubMedCrossRefGoogle Scholar
  46. Kubo I, Hosoda K, Suzuki S, Yamamoto K, Kihara K, Mori K, Yomo T (2013) Construction of bacteria–eukaryote synthetic mutualism. Biosystems 113:66–71. doi: 10.1016/j.biosystems.2013.05.006 PubMedCrossRefGoogle Scholar
  47. Kunisawa J, Kiyono H (2011) Peaceful mutualism in the gut: revealing key commensal bacteria for the creation and maintenance of immunological homeostasis. Cell Host Microbe 9:83–84. doi: 10.1016/j.chom.2011.01.012 PubMedCrossRefGoogle Scholar
  48. Laurinavichene TV, Laurinavichius KS, Tsygankov AA (2014) Integration of purple non-sulfur bacteria into the starch-hydrolyzing consortium. Int J Hydrogen Energ 39:7713–7720. doi: 10.1016/j.ijhydene.2014.03.088 CrossRefGoogle Scholar
  49. Li X, Huang S, Yu J, Wang Q, Wu S (2013) Improvement of hydrogen production of Chlamydomonas reinhardtii by co-cultivation with isolated bacteria. Int J Hydrogen Energ 38:10779–10787. doi: 10.1016/j.ijhydene.2013.02.102 CrossRefGoogle Scholar
  50. Liao X, Chen C, Zhang J, Dai Y, Zhang X, Xie S (2015) Dimethylamine biodegradation by mixed culture enriched from drinking water biofilter. Chemosphere 119:935–940. doi: 10.1016/j.chemosphere.2014.09.020 PubMedCrossRefGoogle Scholar
  51. Liu H, Zhou Y, Xiao W (2012) Shifting nutrient-mediated interactions between algae and bacteria in a microcosm: evidence from alkaline phosphatase assay. Microbiol Res 167:292–298. doi: 10.1016/j.micres.2011.10.005 PubMedCrossRefGoogle Scholar
  52. Liu K, Atiyeh HK, Stevenson BS, Tanner RS, Wilkins MR, Huhnke RL (2014) Mixed culture syngas fermentation and conversion of carboxylic acids into alcohols. Bioresour Technol 152:337–346. doi: 10.1016/j.biortech.2013.11.015 PubMedCrossRefGoogle Scholar
  53. McFarland LV (2009) Evidence-based review of probiotics for antibiotic-associated diarrhea and Clostridium difficile infections. Anaerobe 15:274–280. doi: 10.1016/j.anaerobe.2009.09.002 PubMedCrossRefGoogle Scholar
  54. Messaoudi S, Manai M, Kergourlay G, Prévost H, Connil N, Chobert JM, Dousset X (2013) Lactobacillus salivarius: bacteriocin and probiotic activity. Food Microbiol 36:296–304. doi: 10.1016/ PubMedCrossRefGoogle Scholar
  55. Mitri S, Xavier JB, Foster KR (2011) Social evolution in multispecies biofilms. Proc Natl Acad Sci 108:10839–10846. doi: 10.1073/pnas.1100292108 PubMedPubMedCentralCrossRefGoogle Scholar
  56. Moita R, Freches A, Lemos PC (2014) Crude glycerol as feedstock for polyhydroxyalkanoates production by mixed microbial cultures. Water Res 58:9–20. doi: 10.1016/j.watres.2014.03.066 PubMedCrossRefGoogle Scholar
  57. Mougi A, Kondoh M (2014) Stability of competition–antagonism–mutualism hybrid community and the role of community network structure. J Theor Biol 360:54–58. doi: 10.1016/j.jtbi.2014.06.030 PubMedCrossRefGoogle Scholar
  58. Nadell CD, Foster KR, Xavier JB (2010) Emergence of spatial structure in cell groups and the evolution of cooperation. PLoS Comput Biol 6:e1000716. doi: 10.1371/journal.pcbi.1000716 PubMedPubMedCentralCrossRefGoogle Scholar
  59. Newton AC, Fitt BDL, Atkins SD, Walters DR, Daniell TJ (2010) Pathogenesis, parasitism and mutualism in the trophic space of microbe–plant interactions. Trends Microbiol 18:365–373. doi: 10.1016/j.tim.2010.06.002 PubMedCrossRefGoogle Scholar
  60. Nguyen VK, Lee JU (2015) Effect of sulfur concentration on microbial removal of arsenic and heavy metals from mine tailings using mixed culture of Acidithiobacillus spp. J Geochem Explor 148:241–248. doi: 10.1016/j.gexplo.2014.10.008 CrossRefGoogle Scholar
  61. Nguyen VK, Lee MH, Park HJ, Lee JU (2015) Bioleaching of arsenic and heavy metals from mine tailings by pure and mixed cultures of Acidithiobacillus spp. J Ind Eng Chem 21:451–458. doi: 10.1016/j.jiec.2014.03.004 CrossRefGoogle Scholar
  62. Noble SM (2013) Candida albicans specializations for iron homeostasis: from commensalism to virulence. Curr Opin Microbiol 16:708–715. doi: 10.1016/j.mib.2013.09.006 PubMedCrossRefGoogle Scholar
  63. Ntaikou I, Peroni CV, Kourmentza C, Ilieva VI, Morelli A, Chiellini E, Lyberatos G (2014) Microbial bio-based plastics from olive-mill wastewater: generation and properties of polyhydroxyalkanoates from mixed cultures in a two-stage pilot scale system. J Biotechnol 188:138–147. doi: 10.1016/j.jbiotec.2014.08.015 PubMedCrossRefGoogle Scholar
  64. Olson DG, McBride JE, Shaw AJ, Lynd LR (2012) Recent progress in consolidated bioprocessing. Curr Opin Biotechnol 23:396–405. doi: 10.1016/j.copbio.2011.11.026 PubMedCrossRefGoogle Scholar
  65. Parulekar SJ (2011) Fate of commensalistic cultures in identical coupled bioreactors. Chem Eng Sci 66:1100–1122. doi: 10.1016/j.ces.2010.12.018 CrossRefGoogle Scholar
  66. Phowan P, Danvirutai P (2014) Hydrogen production from cassava pulp hydrolysate by mixed seed cultures: effects of initial pH, substrate and biomass concentrations. Biomass Bioenerg 64:1–10. doi: 10.1016/j.biombioe.2014.03.057 CrossRefGoogle Scholar
  67. Riscuta G (2013) Probiotics and cancer prevention as a part of the healthy microbiome. J Prob Health 1:e103. doi: 10.4172/2329-8901.1000e103 CrossRefGoogle Scholar
  68. Sagnak R, Kargi F (2011a) Hydrogen gas production from acid hydrolyzed wheat starch by combined dark and photo-fermentation with periodic feeding. Int J Hydrogen Energ 36:10683–10689. doi: 10.1016/j.ijhydene.2011.05.167 CrossRefGoogle Scholar
  69. Sagnak R, Kargi F (2011b) Photo-fermentative hydrogen gas production from dark fermentation effluent of acid hydrolyzed wheat starch with periodic feeding. Int J Hydrogen Energ 36:4348–4353. doi: 10.1016/j.ijhydene.2011.01.033 CrossRefGoogle Scholar
  70. Sariñena ST, Barlow J, Costabile A, Gibson GR, Rowland I (2013) Antipathogenic activity of probiotics against Salmonella typhimurium and Clostridium difficile in anaerobic batch culture systems: is it due to synergies in probiotic mixtures or the specificity of single strains? Anaerobe 24:60–65. doi: 10.1016/j.anaerobe.2013.09.011 CrossRefGoogle Scholar
  71. Schmidt T, Ziganshin AM, Nikolausz M, Scholwin F, Nelles M, Kleinsteuber S, Pr€oter J (2014) Effects of the reduction of the hydraulic retention time to 1.5 days at constant organic loading in CSTR, ASBR, and fixed-bed reactors—performance and methanogenic community composition. Biomass Bioenerg 69:241–248. doi: 10.1016/j.biombioe.2014.07.021 CrossRefGoogle Scholar
  72. Schommer NN, Gallo RL (2013) Structure and function of the human skin microbiome. Trends Microbiol 21:660–668. doi: 10.1016/j.tim.2013.10.001 PubMedPubMedCentralCrossRefGoogle Scholar
  73. Seo H, Kim J, Jung J, Jin HM, Jeon CO, Park W (2012) Complexity of cell-cell interactions between Pseudomonas sp. AS1 and Acinetobacter oleivorans DR1: metabolic commensalism, biofilm formation and quorum quenching. Res Microbiol 163:173–181. doi: 10.1016/j.resmic.2011.12.003 PubMedCrossRefGoogle Scholar
  74. Sieber TN (2007) Endophytic fungi in forest trees: are they mutualists? Fungal Biol Rev 21:75–89. doi: 10.1016/j.fbr.2007.05.004 CrossRefGoogle Scholar
  75. Sivagurunathan P, Sen B, Lin CY (2014) Batch fermentative hydrogen production by enriched mixed culture: combination strategy and their microbial composition. J Biosci Bioeng 117:222–228. doi: 10.1016/j.jbiosc.2013.07.015 PubMedCrossRefGoogle Scholar
  76. Smid EJ, Lacroix C (2013) Microbe–microbe interactions in mixed culture food fermentations. Curr Opin Biotechnol 24:148–154. doi: 10.1016/j.copbio.2012.11.007 PubMedCrossRefGoogle Scholar
  77. Tan L, Ning S, Xia H, Sun J (2013) Aerobic decolorization and mineralization of azo dyes by a microbial community in the absence of an external carbon source. Int Biodeter Biodegr 85:210–216. doi: 10.1016/j.ibiod.2013.02.018 CrossRefGoogle Scholar
  78. Tian P, Xu B, Sun H, Li X, Li Z, Wei P (2014) Isolation and gut microbiota modulation of antibiotic-resistant probiotics from human feces. Diagc Microbiol Infect Dis 79:405–412. doi: 10.1016/j.diagmicrobio.2014.04.002 CrossRefGoogle Scholar
  79. Tian Z, Zhang Y, Li Y, Chi Y, Yang M (2015) Rapid establishment of thermophilic anaerobic microbial community during the one-step start up of thermophilic anaerobic digestion from a mesophilic digester. Water Res 69:9–19. doi: 10.1016/j.watres.2014.11.001 PubMedCrossRefGoogle Scholar
  80. Trevors JT (2010a) Perspective: researching the transition from non-living to the first microorganisms: methods and experiments are major challenges. J Microbiol Meth 81:259–263. doi: 10.1016/j.mimet.2010.03.015 CrossRefGoogle Scholar
  81. Trevors JT (2010b) Suitable microscopic entropy for the origin of microbial life: microbiological methods are challenges. J Microbiol Meth 83:341–344. doi: 10.1016/j.mimet.2010.05.012 CrossRefGoogle Scholar
  82. Unnithan VV, Unc A, Smith GB (2014) Mini-review: a priori considerations for bacteria–algae interactions in algal biofuel systems receiving municipal wastewaters. Algal Res 4:35–40. doi: 10.1016/j.algal.2013.11.009 CrossRefGoogle Scholar
  83. Valdez-Vazquez I, Pérez-Rangel M, Tapia A, Buitrón G, Molina C, Hernández G, Amaya-Delgado L (2015) Hydrogen and butanol production from native wheat straw by synthetic microbial consortia integrated by species of Enterococcus and Clostridium. Fuel 159:214–222. doi: 10.1016/j.fuel.2015.06.052 CrossRefGoogle Scholar
  84. Ventura M, Turroni F, O’Connell M (2012) Host–microbe interactions that facilitate gut colonization by commensal bifidobacteria. Trends Microbiol 20:467–476. doi: 10.1016/j.tim.2012.07.002 PubMedCrossRefGoogle Scholar
  85. Villano M, Valentino F, Barbetta A, Martino L, Scandola M, Majone M (2014) Polyhydroxyalkanoates production with mixed microbial cultures: from culture selection to polymer recovery in a high-rate continuous process. New Biotechnol 31:289–296. doi: 10.1016/j.nbt.2013.08.001 CrossRefGoogle Scholar
  86. Waghmode TR, Kurade MB, Khandare RV, Govindwar SP (2011) A sequential aerobic/microaerophilic decolorization of sulfonated mono azo dye Golden Yellow HER by microbial consortium GG-BL. Int Biodeter Biodegr 65:1024–1034. doi: 10.1016/j.ibiod.2011.08.002 CrossRefGoogle Scholar
  87. Waghmode TR, Kurade MB, Kagalkar AN, Govindwar SP (2012) Differential fate of metabolism of a disperse dye by microorganisms Galactomyces geotrichum and Brevibacillus laterosporus and their consortium GG-BL. J Environ Sci 24:1295–1304CrossRefGoogle Scholar
  88. Walker AW, Duncan SH, Louis P, Flint HJ (2014) Phylogeny, culturing and metagenomics of the human gut microbiota. Trends Microbiol 22:267–274. doi: 10.1016/j.tim.2014.03.001 PubMedCrossRefGoogle Scholar
  89. Wang Y, Wu H (2014) Dynamics of a mutualism model with saturated response. Appl Math and Comput 240:16–29. doi: 10.1016/j.amc.2014.04.054 Google Scholar
  90. Wang S, Zheng G, Zhou L (2010) Heterotrophic microorganism Rhodotorula mucilaginosa R30 improves tannery sludge bioleaching through elevating dissolved CO2 and extracellular polymeric substances levels in bioleach solution as well as scavenging toxic DOM to Acidithiobacillus species. Water Res 44:5423–5431. doi: 10.1016/j.watres.2010.06.055 PubMedCrossRefGoogle Scholar
  91. Wernegreen JJ (2012) Mutualism meltdown in insects: bacteria constrain thermal adaptation. Curr Opin Microbiol 15:255–262. doi: 10.1016/j.mib.2012.02.001 PubMedPubMedCentralCrossRefGoogle Scholar
  92. Wu M, Chen L, Tian Y, Ding Y, Dick WA (2013) Degradation of polycyclic aromatic hydrocarbons by microbial consortia enriched from three soils using two different culture media. Environ Poll 178:152–158. doi: 10.1016/j.envpol.2013.03.004 CrossRefGoogle Scholar
  93. Xie B, Bishop S, Stessman D, Wright D, Spalding MH, Halverson LJ (2013) Chlamydomonas reinhardtii thermal tolerance enhancement mediated by a mutualistic interaction with vitamin B12-producing bacteria. ISME J 7:1544–1555. doi: 10.1038/ismej.2013.43 PubMedPubMedCentralCrossRefGoogle Scholar
  94. Xiong T, Peng F, Liu Y, Deng Y, Wang X, Xie M (2014) Fermentation of Chinese sauerkraut in pure culture and binary co-culture with Leuconostoc mesenteroides and Lactobacillus plantarum. LWT - Food Sci Technol 59:713–717. doi: 10.1016/j.lwt.2014.05.059 CrossRefGoogle Scholar
  95. Yadav JSS, Bezawada J, Ajila CM, Yan S, Tyagi RD, Surampalli RY (2014) Mixed culture of Kluyveromyces marxianus and Candida krusei for single-cell protein production and organic load removal from whey. Bioresource Technol 164:119–127. doi: 10.1016/j.biortech.2014.04.069 CrossRefGoogle Scholar
  96. Yamaoka C, Kurita O, Kubo T (2014) Improved ethanol tolerance of Saccharomyces cerevisiae in mixed cultures with Kluyveromyces lactis on high-sugar fermentation. Microbiol Res 169:907–914. doi: 10.1016/j.micres.2014.04.007 PubMedCrossRefGoogle Scholar
  97. Zapalski MK (2011) Is absence of proof a proof of absence? Comments on commensalism. Palaeo 302:484–488. doi: 10.1016/j.palaeo.2011.01.013 Google Scholar
  98. Zárate G, Chaia AP (2012) Influence of lactose and lactate on growth and b-galactosidase activity of potential probiotic Propionibacterium acidipropionici. Anaerobe 18:25–30. doi: 10.1016/j.anaerobe.2011.12.005 PubMedCrossRefGoogle Scholar
  99. Zeng X, Xia W, Jiang Q, Yang F (2013) Effect of autochthonous starter cultures on microbiological and physico-chemical characteristics of Suan yu, a traditional Chinese low salt fermented fish. Food Control 33:344–351. doi: 10.1016/j.foodcont.2013.03.001 CrossRefGoogle Scholar
  100. Zhang JF (2012) Global existence of bifurcated periodic solutions in a commensalism model with delays. Appl Math and Comput 218:11688–11699. doi: 10.1016/j.amc.2012.05.056 Google Scholar
  101. Zuroff TR, Curtis WR (2012) Developing symbiotic consortia for lignocellulosic biofuel production. Appl Microbiol Biotechnol 93:1423–1435. doi: 10.1007/s00253-011-3762-9 PubMedCrossRefGoogle Scholar
  102. Zuroff TR, Xiques SB, Curtis WR (2013) Consortia-mediated bioprocessing of cellulose to ethanol with a symbiotic Clostridium phytofermentans/yeast co-culture. Biotechnol Biofuels 6:59. doi: 10.1186/1754-6834-6-59 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Shiladitya Ghosh
    • 1
  • Ranjana Chowdhury
    • 1
    Email author
  • Pinaki Bhattacharya
    • 2
  1. 1.Chemical Engineering DepartmentJadavpur UniversityKolkataIndia
  2. 2.Chemical Engineering DepartmentHeritage Institute of TechnologyKolkataIndia

Personalised recommendations