Advertisement

Applied Microbiology and Biotechnology

, Volume 100, Issue 14, pp 6309–6317 | Cite as

An inducible tool for random mutagenesis in Aspergillus niger based on the transposon Vader

  • Linda Paun
  • Benjamin Nitsche
  • Tim Homan
  • Arthur F. Ram
  • Frank Kempken
Applied genetics and molecular biotechnology

Abstract

The ascomycete Aspergillus niger is widely used in the biotechnology, for instance in producing most of the world’s citric acid. It is also known as a major food and feed contaminant. While generation of gene knockouts for functional genomics has become feasible in ku70 mutants, analyzing gene functions or metabolic pathways remains a laborious task. An unbiased transposon-based mutagenesis approach may aid this process of analyzing gene functions by providing mutant libraries in a short time. The Vader transposon is a non-autonomous DNA-transposon, which is activated by the homologous tan1-transposase. However, in the most commonly used lab strain of A. niger (N400 strain and derivatives), we found that the transposase, encoded by the tan1 gene, is mutated and inactive. To establish a Vader transposon-based mutagenesis system in the N400 background, we expressed the functional transposase of A. niger strain CBS 513.88 under the control of an inducible promoter based on the Tet-on system, which is activated in the presence of the antibiotic doxycycline (DOX). Increasing amounts of doxycycline lead to higher Vader excision frequencies, whereas little to none activity of Vader was observed without addition of doxycycline. Hence, this system appears to be suitable for producing stable mutants in the A. niger N400 background.

Keywords

Transposon-based mutagenesis Vader Aspergillus niger Tet-on promoter system 

Notes

Acknowledgments

We thank Mark Arentshorst and Krishna Gopie for the help with some of the experiments and Adrian Tsang for providing genomic sequences of N400. L.P. received a grant from the Max-Buchner-Stiftung and a travel grant from the DAAD.

Compliance with ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

253_2016_7438_MOESM1_ESM.pdf (5.1 mb)
ESM 1 (PDF 5189 kb)

References

  1. Amutan M, Nyyssönen E, Stubbs J, Diaz-Torres MR, Dunn-Coleman N (1996) Identification and cloning of a mobile transposon from Aspergillus niger var. awamori. Curr Genet 29:468–473CrossRefPubMedGoogle Scholar
  2. Andersen MR, Salazar MP, Schaap PJ, Van De Vondervoort PJI, Culley D, Thykaer J, Frisvad JC, Nielsen KF, Albang R, Albermann K, Berka RM, Braus GH, Braus-Stromeyer SA, Corrochano LM, Dai Z, Van Dijck PWM, Hofmann G, Lasure LL, Magnuson JK, Menke H, Meijer M, Meijer SL, Nielsen JB, Nielsen ML, Van Ooyen AJJ, Pel HJ, Poulsen L, Samson RA, Stam H, Tsang A, Van Den Brink JM, Atkins A, Aerts A, Shapiro H, Pangilinan J, Salamov A, Lou Y, Lindquist E, Lucas S, Grimwood J, Grigoriev IV, Kubicek CP, Martinez D, Van Peij NNME, Roubos JA, Nielsen J, Baker SE (2011) Comparative genomics of citric-acid-producing Aspergillus niger ATCC 1015 versus enzyme-producing CBS 513 88. Genome Res 21:885–897CrossRefPubMedPubMedCentralGoogle Scholar
  3. Borges MI, Azevedo MO, Bonatelli R, Felipe MSS, Astolfi-Filho S (1990) A practical method for preparation of total DNA from filamentous fungi. Fungal Genet Newsl 37:10Google Scholar
  4. Bos CJ, Debets AJ, Swart K, Huybers A, Kobus G, Slakhorst SM (1988) Genetic analysis and the construction of master strains for assignment of genes to six linkage groups in Aspergillus niger. Curr Genet 14:437–443CrossRefPubMedGoogle Scholar
  5. Braumann I, van den Berg M, Kempken F (2007) Transposons in biotechnologically relevant strains of Aspergillus niger and Penicillium chrysogenum. Fungal Genet Biol 44:1399–1414CrossRefPubMedGoogle Scholar
  6. van den Brink JM, Selten GCM, van den Hombergh JPTW (1999) Expression cloning in filamentous fungi. Patent WO 99/3261Google Scholar
  7. Carvalho NDSP, Arentshorst M, Jin Kwon M, Meyer V, Ram AFJ (2010) Expanding the ku70 toolbox for filamentous fungi: establishment of complementation vectors and recipient strains for advanced gene analyses. Appl Microbiol Biotechnol 87:1463–1473Google Scholar
  8. Cerqueira GC, Arnaud MB, Inglis DO, Skrzypek MS, Binkley G, Simison M, Miyasato SR, Binkley J, Orvis J, Shah P, Wymore F, Sherlock G, Wortman JR (2014) The Aspergillus Genome Database: multispecies curation and incorporation of RNA-Seq data to improve structural gene annotations. Nucleic Acids Res 42:D705–D710CrossRefPubMedGoogle Scholar
  9. Clutterbuck AJ (2011) Genomic evidence of repeat-induced point mutation (RIP) in filamentous ascomycetes. Fungal Genet Biol 48:306–326CrossRefPubMedGoogle Scholar
  10. Cragg GM, Newman DJ (2013) Natural products: a continuing source of novel drug leads. Biochim Biophys Acta - Gen Subj 1830:3670–3695CrossRefGoogle Scholar
  11. Evangelinos M, Anagnostopoulos G, Karvela-Kalogeraki I, PM S, Scazzocchio C, Diallinas G (2015) Minos as a novel Tc1/mariner-type transposable element for functional genomic analysis in Aspergillus nidulans. Fungal Genet Biol 81:1–11CrossRefPubMedGoogle Scholar
  12. Feschotte C, Pritham EJ (2007) DNA transposons and the evolution of eukaryotic genomes. Annu Rev Genet 41:331–368CrossRefPubMedPubMedCentralGoogle Scholar
  13. Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A (2003) ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res 31:3784–3788CrossRefPubMedPubMedCentralGoogle Scholar
  14. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  15. van Hartingsveldt W, Mattern IE, van Zeijl CMJ, Pouwels PH, van den Hondel CAMJJ (1987) Development of a homologous transformation system for Aspergillus niger based on the pyrG gene. MGG Mol Gen Genet 206:71–75CrossRefPubMedGoogle Scholar
  16. Hihlal E, Braumann I, van den Berg M, Kempken F (2011) Suitability of Vader for transposon-mediated mutagenesis in Aspergillus niger. Appl Environ Microbiol 77:2332–2336CrossRefPubMedPubMedCentralGoogle Scholar
  17. Janicki M, Rooke R, Yang G (2011) Bioinformatics and genomic analysis of transposable elements in eukaryotic genomes. Chromosom Res 19:787–808CrossRefGoogle Scholar
  18. Kempken F, Kück U (1998) Evidence for circular transposition derivatives from the fungal hAT-transposon restless. Curr Genet 34:200–203CrossRefPubMedGoogle Scholar
  19. Kersey PJ, Lawson D, Birney E, Derwent PS, Haimel M, Herrero J, Keenan S, Kerhornou A, Koscielny G, Kähäri A, Kinsella RJ, Kulesha E, Maheswari U, Megy K, Nuhn M, Proctor G, Staines D, Valentin F, Vilella AJ, Yates A (2009) Ensembl genomes: extending Ensembl across the taxonomic space. Nucleic Acids Res 38:D563–569Google Scholar
  20. Kollath-Leiß K, Bönniger C, Sardar P, Kempken F (2014) BEM46 shows eisosomal localization and association with tryptophan-derived auxin pathway in Neurospora crassa. Eukaryot Cell 13:1051–1063CrossRefPubMedPubMedCentralGoogle Scholar
  21. Kramer A, Paun L, Imhoff JF, Kempken F, Labes A (2014) Development and validation of a fast and optimized screening method for enhanced production of secondary metabolites using the marine Scopulariopsis brevicaulis strain LF580 producing anti-cancer active scopularide A and B. PLoS One 9:e103320CrossRefPubMedPubMedCentralGoogle Scholar
  22. Li Destri Nicosia MG, Brocard-Masson C, Demais S, Hua Van A, Daboussi M-J, Scazzocchio C (2001) Heterologous transposition in Aspergillus nidulans. Mol Microbiol 39:1330–1344CrossRefPubMedGoogle Scholar
  23. Liu YG, Whittier RF (1995) Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics 25:674–681CrossRefPubMedGoogle Scholar
  24. Meyer V, Wanka F, van Gent J, Arentshorst M, van den Hondel CAMJJ, Ram AFJ (2011) Fungal gene expression on demand: An inducible, tunable, and metabolism-independent expression system for Aspergillus niger. Appl Environ Microbiol 77:2975–2983CrossRefPubMedPubMedCentralGoogle Scholar
  25. Nielsen KF, Mogensen JM, Johansen M, Larsen TO, Frisvad JC (2009) Review of secondary metabolites and mycotoxins from the Aspergillus niger group. Anal Bioanal Chem 395:1225–1242CrossRefPubMedGoogle Scholar
  26. Nordberg H, Cantor M, Dusheyko S, Hua S, Poliakov A, Shabalov I, Smirnova T, Grigoriev IV, Dubchak I (2014) The genome portal of the Department of Energy Joint Genome Institute: 2014 updates. Nucleic Acids Res 42:26–31CrossRefGoogle Scholar
  27. Nyyssönen E, Amutan M, Enfield L, Stubbs J, Dunn-Coleman NS (1996) The transposable element Tan1 of Aspergillus niger var. awamori, a new member of the Fot1 family. Mol Gen Genet 253:50–56CrossRefPubMedGoogle Scholar
  28. Paun L, Kempken F (2015) Fungal transposable elements. In: van den Berg MA, Maruthachalam K (eds) Genetic transformation systems in fungi volume 2. Springer International Publishing, SwitzerlandGoogle Scholar
  29. Pel HJ, de Winde JH, Archer DB, Dyer PS, Hofmann G, Schaap PJ, Turner G, de Vries RP, Albang R, Albermann K, Andersen MR, Bendtsen JD, JAE B, den Berg M v, Breestraat S, MX C, Contreras R, Cornell M, PM C, EGJ D, AJM D, Dekker P, PWM v D, van Dijk A, Dijkhuizen L, AJM D, D’Enfert C, Geysens S, Goosen C, GSP G, PWJ d G, Guillemette T, Henrissat B, Herweijer M, van den Hombergh JP, den Hondel CA v, der Heijden RT v, der Kaaij RM v, FM K, HJ K, CP K, PA v K, Lauber J, X L, der Maarel MJEC v, Meulenberg R, Menke H, MA M, Nielsen J, SG O, Olsthoorn M, Pal K, NNME v P, AFJ R, Rinas U, JA R, CMJ S, Schmoll M, Sun J, Ussery D, Varga J, Vervecken W, de Vondervoort PJJ v, Wedler H, HA W, AP Z, AJJ v O, Visser J, Stam H (2007) Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513 88. Nat Biotechnol 25:221–231CrossRefPubMedGoogle Scholar
  30. Punt PJ, Oliver RP, Dingemanse MA, Pouwels PH, van den Hondel CA (1987) Transformation of Aspergillus based on the hygromycin B resistance marker from Escherichia coli. Gene 56:117–124CrossRefPubMedGoogle Scholar
  31. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74:5463–5467CrossRefPubMedPubMedCentralGoogle Scholar
  32. Schuster E, Dunn-Coleman N, Frisvad JC, Van Dijck PWM (2002) On the safety of Aspergillus niger—a review. Appl Microbiol Biotechnol 59:426–435CrossRefPubMedGoogle Scholar
  33. Selker EU, Tountas NA, Cross SH, Margolin BS, Murphy JG, Bird AP, Freitag M (2003) The methylated component of the Neurospora crassa genome. Nature 422:893–897CrossRefPubMedGoogle Scholar
  34. Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517CrossRefPubMedGoogle Scholar
  35. Thompson JD, Higgins DG, Gibson TJ (1994) Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positionspecific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680CrossRefPubMedPubMedCentralGoogle Scholar
  36. Tsang A, Bellemare A, Darmond C, Bakhuis J (2015) Genetic and genomic manipulation in Aspergillus niger. In: van den Berg MA, Maruthachalam K (eds) Genetic transformation systems in fungi volume 2. Springer International Publishing, SwitzerlandGoogle Scholar
  37. Unkles SE, Campbell E, de Ruiter-Jacobs YMJT, Broekhuijsen M, Marco JA, Carrez D, Contreras R, van den Hondel CAMJJ, Kinghorn JR (1989) The development of a homologous transformation system for Aspergillus oryzae based on the nitrate assimilation pathway: a convenient and general selection system for filamentous fungal transformation. Mol Genome Genet 218:99–104CrossRefGoogle Scholar
  38. Wang Y, Smith KM, Taylor JW, Freitag M, Stajich JE (2015) Endogenous small RNA mediates meiotic silencing of a novel DNA transposon. G3(Bathesda) 5:1949–1960Google Scholar
  39. Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O, Paux E, SanMiguel P, Schulman AH (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8:973–982CrossRefPubMedGoogle Scholar
  40. Windhofer F, Hauck K, Catcheside DEA, Kück U, Kempken F (2002) Ds-like restless deletion derivatives occur in Tolypocladium inflatum and two foreign hosts, Neurospora crassa and Penicillium chrysogenum. Fungal Genet Biol 35:171–182CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Linda Paun
    • 1
  • Benjamin Nitsche
    • 2
  • Tim Homan
    • 2
  • Arthur F. Ram
    • 2
  • Frank Kempken
    • 1
  1. 1.Department of Genetics and Molecular Biology in Botany, Institute of BotanyChristian-Albrechts-UniversityKielGermany
  2. 2.Department of Molecular Microbiology and Biotechnology, Institute of Biology LeidenLeiden UniversityLeidenThe Netherlands

Personalised recommendations