Advertisement

Applied Microbiology and Biotechnology

, Volume 100, Issue 11, pp 5069–5077 | Cite as

K1K8: an Hp1404-derived antibacterial peptide

  • Zhongjie Li
  • Gaomin Liu
  • Lanxia Meng
  • Weiwei Yu
  • Xiaobo Xu
  • Wenxin Li
  • Yingliang WuEmail author
  • Zhijian CaoEmail author
Applied microbial and cell physiology

Abstract

As an alternative class of antimicrobial agents used to overcome drug-resistant infections, antimicrobial peptides (AMPs) have recently gained significant attention. In this study, we designed an improved antimicrobial peptide, K1K8, based on the molecular template of Hp1404. Compared to the wild-type Hp1404, K1K8 showed an improved antibacterial spectrum in vitro, a lower hemolytic activity, and an enhanced serum stability. Importantly, K1K8 also decreased methicillin-resistant Staphylococcus aureus (MRSA) bacterial counts in the wounded region in a mouse skin infection model. Interestingly, K1K8 did not induce bacterial resistance or non-specific immune response reactions. Moreover, the peptide killed bacterial cells mainly by disrupting the bacterial membrane. In summary, K1K8 has the potential to be used as an improved anti-infection agent for topical use, which opens an avenue that potential anti-infection drugs may be designed and developed from the molecular templates of AMPs.

Keywords

Antimicrobial peptides Hemolysis Serum stability MRSA skin infection Resistance 

Notes

Acknowledgments

This work was supported by grants from the National Science Fund of China for Excellent Young Scholar (No. 31422049), National Natural Science Fund of China (No. 31572289), Hubei Science Fund for Excellent Scholars (No. 2015CFA042), Fundamental Research Funds for the Central Universities in China (Nos. 2042014kf0205 and 2042015kf0255), and China Scholarship Council (No. 201308420306).

Compliance with ethical standards

All procedures of animal experiments complied with the guidelines of the Animal Advisory Committee at Wuhan University, and the protocol was approved by the Animal Care and Use Committee at the College of Life Sciences, Wuhan University.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3(3):238–250. doi: 10.1038/nrmicro1098 CrossRefPubMedGoogle Scholar
  2. Cohen SP, McMurry LM, Hooper DC, Wolfson JS, Levy SB (1989) Cross-resistance to fluoroquinolones in multiple-antibiotic-resistant (mar) Escherichia coli selected by tetracycline or chloramphenicol: decreased drug accumulation associated with membrane changes in addition to OmpF reduction. Antimicrob Agents Chemother 33(8):1318–1325CrossRefPubMedPubMedCentralGoogle Scholar
  3. Daum RS (2007) Clinical practice. Skin and soft-tissue infections caused by methicillin-resistant Staphylococcus aureus. N Engl J Med 357(4):380–390. doi: 10.1056/NEJMcp070747 CrossRefPubMedGoogle Scholar
  4. Deslouches B, Islam K, Craigo JK, Paranjape SM, Montelaro RC, Mietzner TA (2005) Activity of the de novo engineered antimicrobial peptide WLBU2 against Pseudomonas aeruginosa in human serum and whole blood: implications for systemic applications. Antimicrob Agents Chemother 49(8):3208–3216. doi: 10.1128/AAC.49.8.3208-3216.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Diekema DJ, Pfaller MA, Schmitz FJ, Smayevsky J, Bell J, Jones RN, Beach M, Grp SP (2001) Survey of infections due to Staphylococcus species: frequency of occurrence and antimicrobial susceptibility of isolates collected in the United States, Canada, Latin America, Europe, and the Western Pacific region for the SENTRY Antimicrobial Surveillance Program, 1997–1999. Clin Infect Dis 32:S114–S132. doi: 10.1086/320184 CrossRefPubMedGoogle Scholar
  6. Fjell CD, Hiss JA, Hancock RE, Schneider G (2012) Designing antimicrobial peptides: form follows function. Nat Rev Drug Discov 11(1):37–51. doi: 10.1038/nrd3591 Google Scholar
  7. Fox JL (2013) Antimicrobial peptides stage a comeback. Nat Biotechnol 31(5):379–382. doi: 10.1038/nbt.2572 CrossRefPubMedGoogle Scholar
  8. Graber C (2007) Skin and soft tissue infections caused by community-acquired methicillin-resistant Staphylococcus aureus. Beta 19(4):20–26PubMedGoogle Scholar
  9. Greenfield NJ (2006) Using circular dichroism spectra to estimate protein secondary structure. Nat Protoc 1(6):2876–2890. doi: 10.1038/nprot.2006.202 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Hancock RE (2001) Cationic peptides: effectors in innate immunity and novel antimicrobials. Lancet Infect Dis 1(3):156–164. doi: 10.1016/S1473-3099(01)00092-5 CrossRefPubMedGoogle Scholar
  11. Hancock REW, Sahl HG (2006) Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol 24(12):1551–1557. doi: 10.1038/Nbt1267 CrossRefPubMedGoogle Scholar
  12. Hartmann M, Berditsch M, Hawecker J, Ardakani MF, Gerthsen D, Ulrich AS (2010) Damage of the bacterial cell envelope by antimicrobial peptides gramicidin S and PGLa as revealed by transmission and scanning electron microscopy. Antimicrob Agents Chemother 54(8):3132–3142. doi: 10.1128/AAC.00124-10 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Huang Y, Huang J, Chen Y (2010) Alpha-helical cationic antimicrobial peptides: relationships of structure and function. Protein Cell 1(2):143–152. doi: 10.1007/s13238-010-0004-3 CrossRefPubMedGoogle Scholar
  14. Jenssen H, Hamill P and Hancock REW (2006) Peptide antimicrobial agents. Clin Microbiol Rev 19(3):491–+. doi:10.1128/Cmr.00056–05Google Scholar
  15. Jiang Z, Vasil AI, Gera L, Vasil ML and Hodges RS (2011) Rational design of alpha-helical antimicrobial peptides to target Gram-negative pathogens, Acinetobacter baumannii and Pseudomonas aeruginosa: utilization of charge, ‘specificity determinants,’ total hydrophobicity, hydrophobe type and location as design parameters to improve the therapeutic ratio. Chem Biol Drug Des 77(4):225–240. doi: 10.1111/j.1747-0285.2011.01086.x
  16. Lai YP, Gallo RL (2009) AMPed up immunity: how antimicrobial peptides have multiple roles in immune defense. Trends Immunol 30(3):131–141. doi: 10.1016/J.It.2008.12.003 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Li Z, Xu X, Meng L, Zhang Q, Cao L, Li W, Wu Y, Cao Z (2014) Hp1404, a new antimicrobial peptide from the scorpion Heterometrus petersii. PLoS one 9(5):e97539. doi: 10.1371/journal.pone.0097539 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Matuszczyk SA (1983) Antibiotic therapy in the light of the multiple drug resistance of bacteria. Czas Stomatol 36(8):595–600PubMedGoogle Scholar
  19. Pitt TL, Sparrow M, Warner M, Stefanidou M (2003) Survey of resistance of Pseudomonas aeruginosa from UK patients with cystic fibrosis to six commonly prescribed antimicrobial agents. Thorax 58(9):794–796CrossRefPubMedPubMedCentralGoogle Scholar
  20. Rajan S (2012) Skin and soft-tissue infections: classifying and treating a spectrum. Cleve Clin J Med 79(1):57–66. doi: 10.3949/ccjm.79a.11044 CrossRefPubMedGoogle Scholar
  21. Ranjbar B, Gill P (2009) Circular dichroism techniques: biomolecular and nanostructural analyses—a review. Chem Biol Drug Des 74(2):101–120. doi: 10.1111/j.1747-0285.2009.00847.x CrossRefPubMedGoogle Scholar
  22. Sanders CC, Sanders WE Jr, Goering RV, Werner V (1984) Selection of multiple antibiotic resistance by quinolones, beta-lactams, and aminoglycosides with special reference to cross-resistance between unrelated drug classes. Antimicrob Agents Chemother 26(6):797–801CrossRefPubMedPubMedCentralGoogle Scholar
  23. Sartelli M, Malangoni MA, May AK, Viale P, Kao LS, Catena F, Ansaloni L, Moore EE, Moore FA, Peitzman AB, Coimbra R, Leppaniemi A, Kluger Y, Biffl W, Koike K, Girardis M, Ordonez CA, Tavola M, Cainzos M, Di Saverio S, Fraga GP, Gerych I, Kelly MD, Taviloglu K, Wani I, Marwah S, Bala M, Ghnnam W, Shaikh N, Chiara O, Faro MP Jr, Pereira GA Jr, Gomes CA, Coccolini F, Trana C, Corbella D, Brambillasca P, Cui Y, Segovia Lohse HA, Khokha V, Kok KY, Hong SK, Yuan KC (2014) World Society of Emergency Surgery (WSES) guidelines for management of skin and soft tissue infections. World J Emerg Surg 9(1):57. doi: 10.1186/1749-7922-9-57
  24. Sato H, Felix JB (2006) Peptide-membrane interactions and mechanisms of membrane destruction by amphipathic alpha-helical antimicrobial peptides. Biochimica Et Biophysica Acta-Biomembranes 1758(9):1245–1256. doi: 10.1016/j.bbamem.2006.02.021 CrossRefGoogle Scholar
  25. Shai Y (1999) Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochim Biophys Acta 1462(1–2):55–70CrossRefPubMedGoogle Scholar
  26. Soman NR, Baldwin SL, Hu G, Marsh JN, Lanza GM, Heuser JE, Arbeit JM, Wickline SA, Schlesinger PH (2009) Molecularly targeted nanocarriers deliver the cytolytic peptide melittin specifically to tumor cells in mice, reducing tumor growth. J Clin Invest 119(9):2830–2842. doi: 10.1172/JCI38842 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Steffen H, Rieg S, Wiedemann I, Kalbacher H, Deeg M, Sahl HG, Peschel A, Gotz F, Garbe C, Schittek B (2006) Naturally processed dermcidin-derived peptides do not permeabilize bacterial membranes and kill microorganisms irrespective of their charge. Antimicrob Agents Chemother 50(8):2608–2620. doi: 10.1128/AAC.00181-06 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Tencza SB, Creighton DJ, Yuan T, Vogel HJ, Montelaro RC, Mietzner TA (1999) Lentivirus-derived antimicrobial peptides: increased potency by sequence engineering and dimerization. J Antimicrob Chemother 44(1):33–41CrossRefPubMedGoogle Scholar
  29. Tong SY, Chen LF, Fowler VG Jr (2012) Colonization, pathogenicity, host susceptibility, and therapeutics for Staphylococcus aureus: what is the clinical relevance? Semin Immunopathol 34(2):185–200. doi: 10.1007/s00281-011-0300-x CrossRefPubMedPubMedCentralGoogle Scholar
  30. Williams DF (2008) On the mechanisms of biocompatibility. Biomaterials 29(20):2941–2953. doi: 10.1016/j.biomaterials.2008.04.023 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Zhongjie Li
    • 1
  • Gaomin Liu
    • 1
  • Lanxia Meng
    • 1
  • Weiwei Yu
    • 1
  • Xiaobo Xu
    • 1
  • Wenxin Li
    • 1
  • Yingliang Wu
    • 1
    Email author
  • Zhijian Cao
    • 1
    Email author
  1. 1.State Key Laboratory of Virology, College of Life SciencesWuhan UniversityWuhanPeople’s Republic of China

Personalised recommendations