Applied Microbiology and Biotechnology

, Volume 100, Issue 11, pp 4959–4968 | Cite as

Comparison of catalytic properties of multiple β-glucosidases of Trichoderma reesei

  • Boyang Guo
  • Nobuaki Sato
  • Peter Biely
  • Yoshihiko Amano
  • Kouichi Nozaki
Biotechnologically relevant enzymes and proteins

Abstract

Ten putative Trichoderma reesei β-glucosidase (BGL) isozymes were heterologously expressed in Escherichia coli and Aspergillus oryzae and purified to homogeneity. Catalytic properties of nine enzymes which showed hydrolytic activity on cellobiose and p-nitrophenyl-β-D-glucopyranoside (pNPG) were investigated. Three BGLs, encoded by the genes cel3A, cel3B, and cel3E, contained a predicted signal peptide, showed higher hydrolytic activity on cello-oligosaccharides than on pNPG, and preferred longer oligosaccharides. Another three putative extracellular BGLs, Cel3B, Cel3F, and Cel3G, and two intracellular enzymes, Cel3C and Cel3D, exhibited preference for pNPG. Intracellular Cel1A showed the highest affinity for cellobiose as a typical cellobiase. Four BGLs, Cel3A, Cel3B, Cel3E, Cel1A, that showed high activity against cello-oligosaccharides were capable of catalyzing transglycosylation reactions from cellobiose, leading to formation of cellotriose and isomeric glucobioses. While Cel3A, Cel3B, and Cel3E synthesized mainly gentiobiose, glycosyl transfer reactions of Cel1A led mainly to sophorose and laminaribiose. Conversion of cellobiose to sophorose by Cel1A reached about 3.6 and 10 % at 1 and 10 % cellobiose concentration, respectively. The formation and persistence of individual cellobiose isomers in incubation mixtures of four BGLs (Cel3A, Cel3B, Cel3E, and Cel1A) with cellobiose correlated well with the kcat values for isomeric glucobioses. Cel1A also showed the lowest sensitivity to inhibition by glucose. Based on all studied catalytic properties, Cel1A appears to be unambiguously the best candidate for site-directed mutations or directed evolution toward improvement of activity, thermostability, and, eventually, efficiency of sophorose synthesis.

Keywords

β-glucosidase Trichoderma reesei Transglycosylation Cellulose degradation 

Supplementary material

253_2016_7342_MOESM1_ESM.pdf (331 kb)
ESM 1(PDF 331 kb)

References

  1. Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The carbohydrate-active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37:D233–D238CrossRefPubMedPubMedCentralGoogle Scholar
  2. Castro S, Pedersoli WR, Cristina A, Antoniêto C, Steindorff AS, Silva-Rocha R, Martinez-Rossi NM, Rossi A, Brown NA, Goldman GH, Faça VM, Persinoti GF, Silva RN (2014) Comparative metabolism of cellulose, sophorose and glucose in Trichoderma reesei using high-throughput genomic and proteomic analyses. Biotechnol Biofuels 7:41. doi:10.1186/1754-6834-7-41 CrossRefGoogle Scholar
  3. Foreman PK, Brown D, Dankmeyer L, Dean R, Diener S, Dunn-Coleman NS, Goedegebuur F, Houfek TD, England GJ, Kelley AS, Meerman HJ, Mitchell T, Mitchinson C, Olivares HA, Teunissen PJ, Yao J, Ward M (2003) Transcriptional regulation of biomass-degrading enzymes in the filamentous fungus Trichoderma reesei. J Biol Chem 278:31988–31997CrossRefPubMedGoogle Scholar
  4. Fowler T, Brown RD Jr (1992) The bgl1 gene encoding extracellular β-glucosidase from Trichoderma reesei is required for rapid induction of the cellulase complex. Mol Microbiol 6:3225–3235CrossRefPubMedGoogle Scholar
  5. Gomi K, Iimura Y, Hara S (1987) Integrative transformation of Aspergillus oryzae with a plasmid containing the Aspergillus nidulans argB gene. Agric Biol Chem 51:2549–2555CrossRefGoogle Scholar
  6. Gomi K, Akeno T, Minetoki T, Ozeki K, Kumagai C, Okazaki N, Iimura Y (2000) Molecular cloning and characterization of a transcriptional activator gene, amyR, involved in the amylolytic gene expression in Aspergillus oryzae. Biosci Biotechnol Biochem 64:816–827CrossRefPubMedGoogle Scholar
  7. Henrissat B, Bairoch A (1993) New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 293:781–788CrossRefPubMedPubMedCentralGoogle Scholar
  8. Häkkinen M, Arvas M, Oja M, Aro N, Penttilä M, Saloheimo M, Pakula TM (2012) Re-annotation of the CAZy genes of Trichoderma reesei and transcription in the presence of lignocellulosic substrates. Microb Cell Factories 11:134–160CrossRefGoogle Scholar
  9. Kovács K, Szakacs G, Zacchi G (2009) Comparative enzymatic hydrolysis of pretreated spruce by supernatants, whole fermentation broths and washed mycelia of Trichoderma reesei and Trichoderma atroviride. Biores Technol 100:1350–1357CrossRefGoogle Scholar
  10. Lineweaver H, Burk D (1934) The determination of enzyme dissociation constants. Am Chem Soc 56:658–666CrossRefGoogle Scholar
  11. Lowry OH, Rosebrough NJ, Farr L, Randall RJ (1951) Protein measurement with folin phenol reagent. Biol Chem 193:265–275Google Scholar
  12. Mach RL, Seiboth B, Myasnikov A, Gonzalez R, Strauss J, Harkki AM, Kubicek CP (1995) The bgl1 gene of Trichoderma reesei QM 9414 encodes an extracellular, cellulose-inducible β-glucosidase involved in cellulase induction by sophorose. Mol Microbiol 16:687–697CrossRefPubMedGoogle Scholar
  13. Mandels M, Parrish FW, Reese ET (1962) Sophorose as an inducer of cellulase in Trichoderma viride. J Bacteriol 83:400–408PubMedPubMedCentralGoogle Scholar
  14. Mandels M, Reese ET (1960) Induction of cellulase in fungi by cellobiose. J Bacteriol 79:816–826PubMedPubMedCentralGoogle Scholar
  15. Nakatani Y, Lamont IL, Cutfield JF (2010) Discovery and characterization of a distinctive exo-1, 3/1, 4-β-glucanase from the marine bacterium pseudoalteromona ssp. Strain BB1. Appl Environ Microbiol 76:6760–6768CrossRefPubMedPubMedCentralGoogle Scholar
  16. Nisizawa T, Suzuki H, Nisizawa K (1971) “De novo” synthesis of cellulase induced by sophorose in Trichoderma viride cells. Biochem 70:387–393Google Scholar
  17. Reese ET (1976) History of the cellulase program at the U.S. army natick development center. Biotechnol Bioeng Symp 6:9–20PubMedGoogle Scholar
  18. Saloheimo M, Kuja-Panula J, Ylösmäki E, Ward M, Penttilä M (2002) Enzymatic properties and intracellular localization of the novel Trichoderma reesei β-glucosidase BGLII (Cel1A). Appl Environ Microbiol 68:4546–4553CrossRefPubMedPubMedCentralGoogle Scholar
  19. Shida Y, Yamaguchi K, Nitta M, Nakamura A, Takahashi M, Kidokoro S, Mori K, Tashiro K, Kuhara S, Matsuzawa T, Yaoi K, Sakamoto Y, Tanaka N, Mirokawa Y, Ogasawara W (2015) The impact of a single mutation of bgl2 on cellulose induction in a Trichoderma reesei mutant. Biotechnol Biofuels 8:230CrossRefPubMedPubMedCentralGoogle Scholar
  20. Sternberg D, Mandels GR (1979) Induction of cellulolytic enzymes in Trichoderma reesei by sophorose. J Bacteriol 139:761–769PubMedPubMedCentralGoogle Scholar
  21. Teeri TT, Koivula A, Linder M, Wohlfahrt G, Divne C, Jones TA (1998) Trichoderma reesei cellobiohydrolases: why so efficient on crystalline cellulose? Biochem Soc Trans 26:173–178CrossRefPubMedGoogle Scholar
  22. Tiwari P, Misra BN (2013) Sangwan NS (2013) β-glucosidases from the fungus Trichoderma: an efficient cellulase machinery in biotechnological applications. Biomed Res Int 203735. doi:10.1155/2013/203735
  23. Vaheri MP, Leisola M, Kauppinen V (1979a) Transglycosylation products of cellulase system of Trichoderma reesei. Biotechnol Lett 1:41–46CrossRefGoogle Scholar
  24. Vaheri MP, Vaheri MEO, Kauppine VS (1979b) Formation and release of cellulolytic enzymes during growth of Trichoderma reesei on cellobiose and glycerol. Appl Microbiol Biotechnol 8:73–80CrossRefGoogle Scholar
  25. Xu J, Zhao G, Kou Y, Zhang W, Zhou Q, Chen G, Liu W (2014) Intracellular β-glucosidases CEL1a and CEL1b are essential for cellulase induction on lactose in Trichoderma reesei. Eukaryotic Cell 13:1001–1013CrossRefPubMedPubMedCentralGoogle Scholar
  26. Zhou Q, Xu J, Kou Y, Lv X, Zhang X, Zhao G, Zhang W, Chen G, Liu W (2012) Differential involvement of β-glucosidases from Hypocrea jecorina in rapid induction of cellulase genes by cellulose and cellobiose. Eukaryot Cell 11:1371–1381CrossRefPubMedPubMedCentralGoogle Scholar
  27. Zhang W, Kou Y, Xu J, Cao Y, Zhao G, Shao J, Wang H, Wang Z, Bao X, Chen G, Liu W (2013) Two major facilitator superfamily sugar transporters from Trichoderma reesei and their roles in induction of cellulase biosynthesis. J Biol Chem. doi:10.1074/jbc.M113.505826 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Boyang Guo
    • 1
  • Nobuaki Sato
    • 1
  • Peter Biely
    • 2
  • Yoshihiko Amano
    • 1
  • Kouichi Nozaki
    • 1
  1. 1.Department of Bioscience and Textile Technology, Interdisciplinary Graduate School of Science and TechnologyShinshu UniversityNaganoJapan
  2. 2.Institute of ChemistrySlovak Academy of SciencesBratislavaSlovakia

Personalised recommendations