Advertisement

Applied Microbiology and Biotechnology

, Volume 100, Issue 6, pp 2555–2566 | Cite as

Biogenic selenium nanoparticles: current status and future prospects

  • Sweety A. Wadhwani
  • Utkarsha U. Shedbalkar
  • Richa Singh
  • Balu A. ChopadeEmail author
Mini-Review

Abstract

Selenium nanoparticles (SeNPs) are gaining importance in the field of medicine owing to their antibacterial and anticancer properties. SeNPs are biocompatible and non-toxic compared to the counterparts, selenite (SeO3 −2) and selenate (SeO4 −2). They can be synthesized by physical, chemical, and biological methods and have distinct bright orange-red color. Biogenic SeNPs are stable and do not aggregate owing to natural coating of the biomolecules. Various hypotheses have been proposed to describe the mechanism of microbial synthesis of SeNPs. It is primarily a two-step reduction process from SeO4 −2 to SeO3 −2 to insoluble elemental selenium (Se0) catalyzed by selenate and selenite reductases. Phenazine-1-carboxylic acid and glutathione are involved in selenite reduction. Se factor A (SefA) and metalloid reductase Rar A present on the surface of SeNPs confer stability to the nanoparticles. SeNPs act as potent chemopreventive and chemotherapeutic agents. Conjugation with antibiotics enhances their anticancer efficacy. These also have applications in nanobiosensors and environmental remediation.

Keywords

Selenium nanoparticles Selenate reduction Mechanism Antibacterial activity Anticancer 

Notes

Acknowledgments

SAW and RS acknowledge University Grants Commission (UGC), New Delhi, India, for awarding research fellowship. UUS is thankful to UGC, New Delhi, for awarding UGC-D.S. Kothari Post Doctoral Fellowship.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

References

  1. Ahmad MS, Yasser MM, Sholkamy EN, Ali AM, Mehanni MM (2015) Anticancer activity of biostabilized selenium nanorods synthesized by Streptomyces bikiniensis strain Ess_amA-1. Int J Nanomedicine 10:3389–3401PubMedCentralPubMedGoogle Scholar
  2. Ali EN, El-Sonbaty SM, Salem FM (2013) Evaluation of selenium nanoparticles as a potential chemopreventive agent against lung carcinoma. Int J Pharm Biol Sci 2(4):38–46Google Scholar
  3. Ayano H, Miyake M, Terasawa K, Kuroda M, Soda S, Sakaguchi T, Ike M (2014) Isolation of a selenite-reducing and cadmium-resistant bacterium Pseudomonas sp. strain RB for microbial synthesis of CdSe nanoparticles. J Biosci Bioeng 117:576–581CrossRefPubMedGoogle Scholar
  4. Bajaj M, Schmidt S, Winter J (2012) Formation of Se (0) nanoparticles by Duganella sp. and Agrobacterium sp. isolated from Se-laden soil of north-east Punjab, India. Microb Cell Fact 11:64PubMedCentralCrossRefPubMedGoogle Scholar
  5. Barnaby S, Frayne S, Fath K, Banerjee I (2011) Growth of Se nanoparticles on kinetin assemblies and their biocompatibility studies. Soft Mater 9:313–334CrossRefGoogle Scholar
  6. Beheshti N, Soflaei S, Shakibaie M, Yazdi M, Ghaffarifar F, Dalimi A, Shahverdi AR (2013) Efficacy of biogenic selenium nanoparticles against Leishmania major: in vitro and in vivo studies. J Trace Elem Med Biol 27:203–207CrossRefPubMedGoogle Scholar
  7. Benko I, Nagy G, Tanczos B, Ungvari E, Sztrik A, Eszenyi P, Prokisch J, Banfalvi G (2012) Subacute toxicity of nano-selenium compared to other selenium species in mice. Environ Toxicol Chem 31:2812–2820CrossRefPubMedGoogle Scholar
  8. Biswas K, Barton L, Tsui W, Shuman K, Gillespie J, Eze C (2011) A novel method for the measurement of elemental selenium produced by bacterial reduction of selenite. J Microbiol Methods 86:140–144CrossRefPubMedGoogle Scholar
  9. Bo Li D, Cheng Y, Wu C, Li W, Li N, Yang Z, Tong Z, Yu H (2014) Selenite reduction by Shewanella oneidensis MR-1 is mediated by fumarate reductase in periplasm. Sci Rep 4:3735Google Scholar
  10. Butler C, Debieux C, Dridge E, Splatt P, Wright M (2012) Biomineralization of selenium by the selenate-respiring bacterium Thauera selenatis. Biochem Soc Trans 40:1239–1243CrossRefPubMedGoogle Scholar
  11. Bѐ bien M, Kirsch J, Mѐ jean V, Vermѐ glio A (2002) Involvement of a putative molybdenum enzyme in the reduction of selenate by Escherichia coli. Microbiology 148:3865–3872CrossRefGoogle Scholar
  12. Chen T, Wong Y, Zheng W, Bai Y, Huang L (2008) Selenium nanoparticles fabricated in Undaria pinnatifida polysaccharide solutions induce mitochondria-mediated apoptosis in A375 human melanoma cells. Colloids Surf B Biointerf 67:26–31CrossRefGoogle Scholar
  13. Debieux C, Dridge E, Mueller C, Splatt P, Paszkiewicz K, Knight I, Florance R, Love J, Titball RW, Lewis RJ, Richardson DJ, Butler CS (2011) A bacterial process for selenium nanosphere assembly. Proc Nat Acad Sci 108:13481CrossRefGoogle Scholar
  14. Deshpande L, Kapadnis B, Chopade BA (1993) Metal resistance in Acinetobacter and its relation to beta-lactamase production. Biometals 6(1):55–59CrossRefPubMedGoogle Scholar
  15. Dhanjal S, Cameotra S (2010) Aerobic biogenesis of selenium nanospheres by Bacillus cereus isolated from coalmine soil. Microb Cell Factories 9:52CrossRefGoogle Scholar
  16. Dobias J, Suvorova EI (2011) Role of proteins in controlling selenium nanoparticle size. Nanotechnology 22:195605CrossRefPubMedGoogle Scholar
  17. Domokos-Szabolcsy E, Marton L, Sztrik A, Babka B, Prokisch J, Fari M (2012) Accumulation of red elemental selenium nanoparticles and their biological effects in Nicotinia tabacum. Plant Growth Regul 68:525–31Google Scholar
  18. Dungan R, Yates S, Frankenberger W (2003) Transformations of selenate and selenite by Stenotrophomonas maltophilia isolated from a seleniferous agricultural drainage pond sediment. Environ Microbiol 25:287–295CrossRefGoogle Scholar
  19. Dwivedi C, Shah C, Singh K, Kumar M, Bajaj P (2011) An organic acid-induced synthesis and characterization of selenium. Nanopart J Nanotechnol 2011:doi: 10.1155/2011/651971
  20. Dwivedi S, Alkhedhairy A, Ahamed M, Musarrat J (2013) Biomimetic synthesis of selenium nanospheres by bacterial strain JS-11 and its role as a biosensor for nanotoxicity assessment: a novel Se-bioassay. PLoS One 8:1–10Google Scholar
  21. Fellowes J, Pattrick R, Green D, Dent A, Lloyd J, Pearce C (2011) Use of biogenic and abiotic elemental selenium nanospheres to sequester elemental mercury released from mercury contaminated museum specimens. J Hazard Mater 189:660–669CrossRefPubMedGoogle Scholar
  22. Forootanfara H, Mahboubeh A, Maryam N, Mitra M, Bagher A, Ahmad S (2013) Antioxidant and cytotoxic effect of biologically synthesized selenium nanoparticles in comparison to selenium dioxide. J Trace Elem Med Biol doi: 10.1016/j.jtemb.2013.07.005
  23. Forootanfara H, Zare B, Fasihi-Bam H, Amirpour-Rostami S, Ameri A, Shakibaie M, Torabi Nami M (2014) Biosynthesis and characterization of selenium nanoparticles produced by terrestrial actinomycete Streptomyces microflavus strain FSHJ31. Res Rev J Microbiol Biotechnol 3(1):47–53Google Scholar
  24. Gaidhani S, Singh R, Singh D, Patel U, Shevade K, Yeshvekar R, Chopade BA (2013) Biofilm disruption activity of silver nanoparticles synthesized by Acinetobacter calcoaceticus PUCM 1005. Mater Lett 108:324–327CrossRefGoogle Scholar
  25. Gaidhani S, Yeshvekar RV, Shedbalkar US, Bellare JH, Chopade BA (2014) Bio-reduction of hexachloroplatinic acid to platinum nanoparticles employing Acinetobacter calcoaceticus. Process Biochem 49:2313–2319CrossRefGoogle Scholar
  26. Gao X, Kong L. Treatment of cancer with selenium nanoparticles. 2011; US2011/0262564A1Google Scholar
  27. Garbisu C, Carlson D, Adamkiewicz M, Yee B, Wong J, Resto E, Leighton T, Buchanan BB (1999) Morphological and biochemical responses of Bacillus subtilis to selenite stress. Biofactors 110:311–319CrossRefGoogle Scholar
  28. Garbisu C, Gonzalez S, Yang W, Yee B, Carlson D, Yee A, Smith NR, Otero R, Leighton T, Buchanan BB (1995) Physiological mechanisms regulating the conversion of selenite to elemental selenium by Bacillus subtilis. Biofactors 5:29–37PubMedGoogle Scholar
  29. Garbisu C, Ishii T, Leighton T, Buchanan BB (1996) Bacterial reduction of selenite to elemental selenium. Chem Geol 199–204Google Scholar
  30. Gerrard T, Telford J, Williams H (1974) Detection of selenium deposits in Escherichia coli by electron microscopy. J Bacreriol 119:1057–1060Google Scholar
  31. Gharieb M, Wilkinson S, Gadd G (1995) Reduction of selenium oxyanions by unicellular, polymorphic and filamentous fungi: cellular location of reduced selenium and implications for tolerance. J Ind Microbiol 14:300–311CrossRefGoogle Scholar
  32. Ghosh S, Patil S, Ahire M, Kitture R, Kale S, Pardesi K, Cameotra SS, Bellare J, Dhavale DD, Jabgunde A, Chopade BA (2012a) Synthesis of silver nanoparticles using Dioscorea bulbifera tuber extract and evaluation of its synergistic potential in combination with antimicrobial agents. Int J Nanomedicine 7:483–496PubMedCentralPubMedGoogle Scholar
  33. Ghosh S, Patil S, Ahire M, Kitture R, Gurav DD, Jabgunde AM, Kale S, Pardesi K, Shinde V, Bellare J, Dhavale DD, Chopade BA (2012b) Gnidia glauca flower extract mediated synthesis of gold nanoparticles and evaluation of its chemocatalytic potential. J Nanobiotechnol 10:17CrossRefGoogle Scholar
  34. Ghosh S, Jagtap S, More P, Shete UJ, Maheshwari NO, Rao SJ, Kitture R, Kale S, Bellare J, Patil S, Pal JK, Chopade BA (2015) Dioscorea bulbifera mediated synthesis of novel Aucore Agshell nanoparticles with potent antibiofilm and antileishmanial activity. doi: 10.1155/2015/562938
  35. Gregorio S, Lampis S, Vallini G (2005) Selenite precipitation by a rhizospheric strain of Stenotrophomonas sp. isolated from the root system of Astragalus bisulcatus: a biotechnological perspective. Environ Int 31:233–241CrossRefPubMedGoogle Scholar
  36. Guymer D, Maillard J, Sargent F (2009) A genetic analysis of in vivo selenate reduction by Salmonella enterica serovar Typhimurium LT2 and Escherichia coli K12. Arch Microbiol 191:519–528CrossRefPubMedGoogle Scholar
  37. Hariharan H, Al-harbi N, Karuppiah P, Rajaram S (2012) Microbial synthesis of selenium nanocomposite using Saccharomyces cerevisiae and its antimicrobial activity against pathogens causing nosocomial infection. Chalcogenide Lett 9:509–515Google Scholar
  38. Hnain A, Brooks J, Lefebvre DD (2013) The synthesis of elemental selenium particles by Synechococcus leopoliensis. Appl Microbiol Biotechnol 97:10511–10519CrossRefPubMedGoogle Scholar
  39. Hong Lin Z, Chu Lin F, Wang C (2004) Observation in the growth of selenium nanoparticles. J Chin Chem Soc 51:239–242CrossRefGoogle Scholar
  40. Hu C, Li Y, Xiong L, Zhang H, Song J, Xia M (2012) Comparative effects of nano elemental selenium and sodium selenite on selenium retention in broiler chickens. Anim Feed Sci Technol 177:204–210CrossRefGoogle Scholar
  41. Hunter W, Kuykendall L (2007) Reduction of selenite to elemental red selenium by Rhizobium sp. strain B1. Curr Microbiol 55:344–349CrossRefPubMedGoogle Scholar
  42. Husen A, Siddiqi KS (2014) Plants and microbes assisted selenium nanoparticles: characterization and application. J of Nanobiotechnol 12:28CrossRefGoogle Scholar
  43. Iranifam M, Fathinia M, Sadeghi T, Hanifehpour Y, Khataee A, Joo S (2013) A novel selenium nanoparticles-enhanced chemiluminescence system for determination of dinitrobutylphenol. Talanta 107:263–269CrossRefPubMedGoogle Scholar
  44. Jayaweera GR, Biggar J (1996) Role of redox potential in chemical transformations of selenium in soils. Soil Science Soc American J 60:1056–1063CrossRefGoogle Scholar
  45. Jiang S, Cuong T, Lee J, Duong H, Han S, Hur H (2012) Mercury capture into biogenic amorphous selenium nanospheres produced by mercury resistant Shewanella putrefaciens. Chemosphere 87:621–624CrossRefPubMedGoogle Scholar
  46. Kaur G, Iqbal M, Bakshi M (2009) Biomineralization of fine selenium crystalline rods and amorphous spheres. J Phys Chem 113:13670–13676CrossRefGoogle Scholar
  47. Kazempour Z, Hossein M, Yazdi F, Shahverdi A (2013) Sub-inhibitory concentration of biogenic selenium nanoparticles lacks post antifungal effect for Aspergillus niger and Candida albicans and stimulates the growth of Aspergillus niger. Iranian J Microbiol 5:81–85Google Scholar
  48. Kessi J, Ramuz M, Wehrli E, Spycher M, Bachofen R (1999) Reduction of selenite and detoxification of elemental selenium by the phototrophic bacterium Rhodospirillum rubrum. Appl Environ Microbiol 65:4734–4740PubMedCentralPubMedGoogle Scholar
  49. Kessi J, Hanselmann K (2004) Similarities between the abiotic reduction of selenite with glutathione and the dissimilatory reaction mediated by Rhodospirillum rubrum and Escherichia coli. J Biol Chem 279:50662–50669CrossRefPubMedGoogle Scholar
  50. Kessi J (2006) Enzymic systems proposed to be involved in the dissimilatory reduction of selenite in the purple non-sulfur bacteria Rhodospirillum rubrum and Rhodobacter capsulatus. Microbiology 152:731–743CrossRefPubMedGoogle Scholar
  51. Kitture R, Chordiya K, Gaware S, Ghosh S, More PA, Kulkarni P, Chopade BA, Kale SN (2015) ZnO nanoparticles-red sandalwood conjugate: a promising anti-diabetic agent. J Nanosci Nanotechnol 15(6):4046–4051CrossRefPubMedGoogle Scholar
  52. Krafft T, Bowen A, Theis F, Macy J (2000) Cloning and sequencing of the genes encoding the periplasmic cytochrome B-containing selenate reductase of Thauera selenatis. DNA Seq 10:365–377CrossRefPubMedGoogle Scholar
  53. Lampis S, Zonaro E, Bertolini C, Bernardi P, Butler C, Vallini G (2014) Delayed formation of zero-valent selenium nanoparticles by Bacillus mycoides SeITE01 as a consequence of selenite reduction under aerobic conditions. Microb Cell Factories 13:35CrossRefGoogle Scholar
  54. Lampis S, Zonaro E, Santi C, Ferrari A, Vallini G (2012) Bacterial biosynthesis of selenium nanoparticles by environmental isolates of Stenotrophomonas maltophilia. Environ Eng Manag J 3:S20Google Scholar
  55. Lenz M, Aelst A, Smit M, Corvini P, Lens P (2009) Biological production of selenium nanoparticles from waste waters. Adv Mater Res 73:721–724CrossRefGoogle Scholar
  56. Lenz M, Kolvenbach B, Gygax B, Moes S, Corvini P (2011) Shedding light on selenium biomineralization: proteins associated with bionanominerals. Appl Environ Microbiol 77:4676–4680PubMedCentralCrossRefPubMedGoogle Scholar
  57. Li S, Shen Y, Xie A, Yu X, Zhang X, Yang L, Li C (2007) Rapid, room-temperature synthesis of amorphous selenium/protein composites using Capsicum annuum L extract. Nanotechnology 18:405101CrossRefGoogle Scholar
  58. Li H, Zhang J, Wang T, Luo W, Zhou Q, Jiang G (2008) Elemental selenium particles at nano-size (Nano-Se) are more toxic to Medaka (Oryzias latipes) as a consequence of hyper-accumulation of selenium: a comparison with sodium selenite. Aquat Toxicol 89:251–256CrossRefPubMedGoogle Scholar
  59. Li Y, Li X, Wong YS, Chen T, Zhang H, Liu C, Zheng W (2011) The reversal of cisplatin-induced nephrotoxicity by selenium nanoparticles functionalized with 11-mercapto-1-undecanol by inhibition of ROS-mediated apoptosis. Biomaterials 2(34):9068–9076CrossRefGoogle Scholar
  60. Lortie L, Gould WD, Rajan S, McCready RG, Cheng KJ (1992) Reduction of selenate and selenite to elemental selenium by a Pseudomonas stutzeri isolate. Appl Environ Microbiol 58:4042–4044PubMedCentralPubMedGoogle Scholar
  61. Losi M, Frankenberger W (1997) Reduction of selenium oxyanions by Enterobacter cloacae SLD1a-1: isolation and growth of the bacterium and its expulsion of selenium particles. Appl Environ Microbiol 63:3079–3084PubMedCentralPubMedGoogle Scholar
  62. Luo H, Wang F, Bai Y, Chen T, Zheng W (2012) Selenium nanoparticles inhibit the growth of HeLa and MDA-MB-231 cells through induction of S phase arrest. Colloids Surf B: Biointerf 94:304–308CrossRefGoogle Scholar
  63. Ma J, Kobayashi DY, Yee N (2009) Role of menaquinone biosynthesis genes in selenate reduction by Enterobacter cloacae SLD1a-1 and Escherichia coli K12. Environ Microbiol 11:149–158CrossRefPubMedGoogle Scholar
  64. Mahmoudvand H, Harandi M, Shakibaie M, Aflatoonian M, ZiaAli N, Makki M, Makki M, Jahanbakhsha S (2014) Scolicidal effects of biogenic selenium nanoparticles against protoscolices of hydatid cysts. Int J Surg 12:5399–5403CrossRefGoogle Scholar
  65. Mittal M, Chisti Y, Banerjee U (2013) Synthesis of metallic nanoparticles using plant extracts. Biotechnol Advances 31:346–356CrossRefGoogle Scholar
  66. Nancharaiah YV, Lens PNL (2015a) Selenium biomineralization for biotechnological applications. Trends Biotechnol doi: 10.1016/j.tibtech.2015.03.004
  67. Nancharaiah YV, Lens PNL (2015b) Ecology and biotechnology of selenium-respiring bacteria. Microbiol Mol Biol Rev 79(1):61–80CrossRefPubMedGoogle Scholar
  68. Oremland R, Herbe M, Blum J, Langley S, Beveridge T, Ajayan P, Sutto PT, Ellis AV, Curran S (2004) Structural and spectral features of selenium nanospheres produced by se-respiring bacteria. Appl Environ Microbiol 70:52–60PubMedCentralCrossRefPubMedGoogle Scholar
  69. Overschelde O, Guisbiers G, Snyders R (2013) Green synthesis of selenium nanoparticles by excimer pulsed laser ablation in water. Appl Mater 1:042114CrossRefGoogle Scholar
  70. Pearce C, Coker V, Charnock J, Pattrick R, Mosselmans J, Law N, Beveridge TJ, Lloyd JR (2008) Microbial manufacture of chalcogenide-based nanoparticles via the reduction of selenite using Veillonella atypica: an in situ EXAFS study. Nanotechnology 19:155603CrossRefPubMedGoogle Scholar
  71. Peng D, Zhang J, Liu Q, Taylor E (2007) Size effect of elemental selenium nanoparticles (Nano-Se) at supranutritional levels on selenium accumulation and glutathione S-transferase activity. J Inorg Biochem 101:1457–1463CrossRefPubMedGoogle Scholar
  72. Pickett TM, Yanguo MA, Sonstegard J, Kain J, Vuong D, Frased DB (2013) Selenium removal using chemical oxidation and biological reduction. US 0270181 A1Google Scholar
  73. Prasad S, Vyas P, Prajapati V, Patel P, Selvaraj K (2012) Biomimetic synthesis of selenium nanoparticles using cell-free extract of Microbacterium sp. ARB05. Micro Nano Lett 8:11Google Scholar
  74. Prasad S, Patela H, Patela K, Selvaraj K (2013) Biosynthesis of Se nanoparticles and its effect on UV-induced DNA damage. Colloids Surf B Biointerf 103:261–266CrossRefGoogle Scholar
  75. Prasad S, Selvaraj K (2014) Biogenic synthesis of selenium nanoparticles and their effect on as(III)-induced toxicity on human lymphocytes. Biol Trace Elem Res 157:275–283CrossRefPubMedGoogle Scholar
  76. Quintana M, Haro-Poniatowski E, Morales J, Batina N (2002) Synthesis of selenium nanoparticles by pulsed laser ablation. Appl Surf Sci 195:175–186CrossRefGoogle Scholar
  77. Ramamurthy C, Sampath K, Arunkumar P, Suresh Kumar M, Sujatha V, Premkumar K, Thirunavukkarasu C (2013) Green synthesis and characterization of selenium nanoparticles and its augmented cytotoxicity with doxorubicin on cancer cells. Bioprocess Biosyst Eng. doi: 10.1007/s00449-012-0867-1 PubMedGoogle Scholar
  78. Rezvanfar M, Rezvanfar M, Shahverdi A, Ahmadi A, Baeeri M, Mohammadirad A, Abdollahi M (2013) Protection of cisplatin-induced spermatotoxicity, DNA damage and chromatin abnormality by selenium nano-particles. Toxicol Appl Pharmacol 266:356–365CrossRefPubMedGoogle Scholar
  79. Ridley H, Watts C, Richardson D, Butler C (2006) Resolution of distinct membrane-bound enzymes from Enterobacter cloacae SLD1a-1 that are responsible for selective reduction of nitrate and selenate oxyanions. Appl Environ Microbiol 5173–80Google Scholar
  80. Salunke GR, Ghosh S, Santosh Kumar RJ, Khade S, Vashisth P, Kale T, Chopade S, Pruthi V, Kundu G, Bellare JR, Chopade BA (2014) Rapid efficient synthesis and characterization of silver, gold, and bimetallic nanoparticles from the medicinal plant Plumbago zeylanica and their application in biofilm control. Int J Nanomedicine 9:2635–2653PubMedCentralPubMedGoogle Scholar
  81. Sarkar J, Dey P, Saha S, Acharya K (2011) Mycosynthesis of selenium nanoparticles. Micro Nano Lett 6:599–602CrossRefGoogle Scholar
  82. Schröder I, Rech S, Krafft T, Macy J (1997) Purification and characterization of the selenate reductase from Thauera selenatis. J Biol Chem 272:23765–23768Google Scholar
  83. Shahverdi A, Fakhimi A, Mosavat G, Fesharaki P, Rezaie S, Rezayat S (2010) Antifungal activity of biogenic selenium nanoparticles. World Appl Sci J 10:918–922Google Scholar
  84. Shakibaie M, Khorramizadeh M, Faramarzi M, Sabzevari O, Shahverdi A (2010) Biosynthesis and recovery of selenium nanoparticles and the effects on matrix metalloproteinase-2 expression. Biotechnol Appl Biochem 15:7–15CrossRefGoogle Scholar
  85. Shakibaie M, Shahverdi A, Faramarzi M, Hassanzadeh G, Rahimi H, Sabzevari O (2013) Acute and subacute toxicity of novel biogenic selenium nanoparticles in mice. Pharm Biol 51:58–63CrossRefPubMedGoogle Scholar
  86. Sharma G, Sharma A, Bhavesh R, Park J, Ganbold B, Nam J, Sang-soo L (2014) Biomolecule-mediated synthesis of selenium nanoparticles using dried Vitis vinifera (raisin) extract. Molecules 19:2761–2770CrossRefPubMedGoogle Scholar
  87. Shedbalkar U, Singh R, Wadhwani S, Gaidhani S, Chopade BA (2014) Microbial synthesis of gold nanoparticles: current status and future prospects. Adv Colloid Interf Sci 209:40–48CrossRefGoogle Scholar
  88. Shi L, Xun W, Yue W, Zhang C, Ren Y, Shi L, Wang Q, Yang R, Lei F (2011) Effect of sodium selenite, Se-yeast and nano-elemental selenium on growth performance. Small Ruminant Res 96:49–52CrossRefGoogle Scholar
  89. Singh R. Shedbalkar U, Wadhwani S, Chopade B.A. (2015) Bacteriagenic silver nanoparticles: synthesis, mechanism, and applications. Appl Microbiol Biotechnol doi  10.1007/s00253-015-6622-1
  90. Singh R, Wagh P, Wadhwani S, Gaidhani S, Kumbhar A, Bellare J, Chopade BA (2013) Synthesis, optimization, and characterization of silver nanoparticles from Acinetobacter calcoaceticus and their enhanced antibacterial activity when combined with antibiotics. Int J Nanomedicine 8:4277–4290PubMedCentralPubMedGoogle Scholar
  91. Soflaei S, Dalimi A, Abdoli A, Kamali M, Nasiri V, Shakibaie M, Tat M (2012) Anti-leishmanial activities of selenium nanoparticles and selenium dioxide on Leishmania infantum. Comp Clin Pathol doi: 10.1007/s00580-012-1561-z
  92. Srivastava N, Mukhopadhyay M (2013) Biosynthesis and structural characterization of selenium nanoparticles mediated by Zooglea ramigera. Powder Technol 244:26–29CrossRefGoogle Scholar
  93. Swerdlow RD, Setlow P (1983) Purification and characterization of a Bacillus megaterium disulfide reductase specific for disulfides containing pantethine 4′,4″-diphosphate. J Bacteriol 153:475–484PubMedCentralPubMedGoogle Scholar
  94. Tam K, Ho C, Lee J, Lai M, Chang C, Rheem Y, Chen H, Hur N, Myung V (2010) Critical evaluation of nanoparticle tracking analysis (NTA) by nanosight for the measurement of nanoparticles and protein aggregates. Biosci Biotechnol Biochem 74:696–700CrossRefPubMedGoogle Scholar
  95. Torres K, Campos V, Leon C, Rojas S, Guez-Llamazares S, Gonza’lez M, Smith C, MA M (2012) Biosynthesis of selenium nanoparticles by Pantoea agglomerans and their antioxidant activity. J Nanoparticle Res 14:1236CrossRefGoogle Scholar
  96. Vekariya KK, Kaur J, Tikoo K (2013) Alleviating anastrozole induced bone toxicity by selenium nanoparticles in SD rats. Toxicol Appl Pharm 268:212–220Google Scholar
  97. Vetchinkina E, Loshchinina E, Kursky V, Nikitina V (2013) Reduction of organic and inorganic selenium compounds by the edible medicinal basidiomycete Lentinula edodes and the accumulation of elemental selenium nanoparticles in its mycelium. J Microbiol 51:829–835CrossRefPubMedGoogle Scholar
  98. Wadhwani S, Shedbalkar U, Singh R, Karve M, Chopade B (2014) Novel polyhedral gold nanoparticles: green synthesis, optimization and characterization by environmental isolate of Acinetobacter sp.SW30. World J Microbiol Biotechnol 30:2723–2731CrossRefPubMedGoogle Scholar
  99. Wang H, Zhang J, Yu H (2007) Elemental selenium at nano size possesses lower toxicity without compromising the fundamental effect on selenoenzymes: comparison with selenomethionine in mice. Free Radic Biol Med 42:1524–1533CrossRefPubMedGoogle Scholar
  100. Wang T, Yang L, Zhang B, Liu J (2010) Extracellular biosynthesis and transformation of selenium nanoparticles and application in H2O2 biosensor. Colloids Surf. B : Biointerf. 2010(80):94–102CrossRefGoogle Scholar
  101. Watts C, Ridley H, Condie K, Leaver J, Richardson D, Butler C (2003) Selenate reduction by Enterobacter cloacae SLD1a-1 is catalysed by a molybdenum-dependent membrane-bound enzyme that is distinct from the membrane-bound nitrate reductase. FEMS Microbiol Lett 228:273–279CrossRefPubMedGoogle Scholar
  102. Yang F, Tang Q, Zhong X, Bai Y, Chen T, Zhang Y, Li Y, Zhang X (2012) Surface decoration by Spirulina polysaccharide enhances the cellular uptake and anticancer efficacy of selenium nanoparticles. Int J Nanomedicine 7:835–844PubMedCentralCrossRefPubMedGoogle Scholar
  103. Yazdi M, Mahdavi M, Setayesh N, Esfandyar M, Shahverdi A (2013) Selenium nanoparticle-enriched Lactobacillus brevis causes more efficient immune responses in vivo and reduces the liver metastasis in metastatic form of mouse breast cancer. DARU J Pharm Sci 21:33CrossRefGoogle Scholar
  104. Yazdi MZ, Mahdavi M, Varastehmoradi B, Faramarzi MA, Shahverdi AR (2012) The immunostimulatory effect of biogenic selenium nanoparticles on the 4T1 breast cancer model: an in vivo study. Biol Trace Elem Res 149:22–28CrossRefPubMedGoogle Scholar
  105. Yee N, Ma J, Dalia A, Boonfueng T, Kobayashi B (2007) Se(VI) reduction and the precipitation of Se(0) by the facultative bacterium Enterobacter cloacae SLD1a-1 are regulated by FNR. Appl Environ Microbiol 73:1914–1920PubMedCentralCrossRefPubMedGoogle Scholar
  106. Zare B, Babaie S, Setayesh N, Shahverdi A (2012) Isolation and characterization of a fungus for extracellular synthesis of small selenium nanoparticles. Nanomed J 1:14–20Google Scholar
  107. Zhang J, Spallholz J (2011) Toxicity of selenium compounds and nano-selenium particles. Gen Appl Syst Toxicol. doi: 10.1002/9780470744307 Google Scholar
  108. Zhang J, Zhang S, Xu J, Chen H (2004) A new method for the synthesis of selenium nanoparticles and the application to construction of H2O2 biosensor. Chin Chem Lett 15:1345–1348Google Scholar
  109. Zhang Y, Wang J, Zhang L (2010) Creation of highly stable selenium nanoparticles capped with hyperbranched polysaccharide in water. Langmuir 26:17617–17623CrossRefPubMedGoogle Scholar
  110. Zhang W, Chen Z, Liu H, Zhang L, Gao P, Li D (2011) Biosynthesis and structural characteristics of selenium nanoparticles by Pseudomonas alcaliphila. Colloids Surf B: Biointerf 88:196–201CrossRefGoogle Scholar
  111. Zonaro E, Lampis S, Turner RJ, Qazi S, Vallini G (2015) Biogenic selenium and tellurium nanoparticles synthesized by environmental microbial isolates efficaciously inhibit bacterial planktonic cultures and biofilms. Front Microbiol doi: 10.3389/fmicb.2015.00584

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Sweety A. Wadhwani
    • 1
  • Utkarsha U. Shedbalkar
    • 1
    • 2
  • Richa Singh
    • 1
  • Balu A. Chopade
    • 1
    • 3
    Email author
  1. 1.Department of MicrobiologySavitribai Phule Pune UniversityPuneIndia
  2. 2.Department of BiochemistryThe Institute of ScienceMumbaiIndia
  3. 3.Dr. Babasaheb Ambedkar Marathwada UniversityAurangabadIndia

Personalised recommendations