Applied Microbiology and Biotechnology

, Volume 100, Issue 5, pp 2107–2119 | Cite as

Biotechnology of riboflavin

  • Susanne Katharina Schwechheimer
  • Enoch Y. Park
  • José Luis Revuelta
  • Judith Becker
  • Christoph WittmannEmail author


Riboflavin (vitamin B2) production has shifted from chemical synthesis to exclusive biotechnological synthesis in less than 15 years. The underlying extraordinary achievement in metabolic engineering and bioprocess engineering is reviewed in this article with regard to the two most important industrial producers Bacillus subtilis and Ashbya gossypii. The respective biosynthetic routes and modifications are discussed, and also the regulation of riboflavin synthesis. As the terminal biosynthesis of riboflavin starts from the two precursors, ribulose 5-phosphate and guanosine triphosphate (GTP), both strains have been optimized for an improved flux through the pentose phosphate pathway as well as the purine biosynthetic pathway. Specific targets for improvement of A. gossypii were the increase of the glycine pool and the increase of carbon flow through the glyoxylic shunt. In B. subtilis, research interest, amongst others, has focused on gluconeogenesis and overexpression of the rib operon. In addition, insight into large-scale production of vitamin B2 is given, as well as future prospects and possible developments.


Riboflavin Ashbya gossypii Bacillus subtilis Metabolic engineering Vitamin B2 


Compliance with ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no competing interests.


  1. Abbas CA, Sibirny AA (2011) Genetic control of biosynthesis and transport of riboflavin and flavin nucleotides and construction of robust biotechnological producers. Microbiol Mol Biol Rev 75(2):321–360PubMedCentralCrossRefPubMedGoogle Scholar
  2. Bacher A, Eberhardt S, Fischer M, Kis K, Richter G (2000) Biosynthesis of vitamin B2 (riboflavin). Annu Rev Nutr 20:153–167CrossRefPubMedGoogle Scholar
  3. Banerjee R, Batschauer A (2005) Plant blue-light receptors. Planta 220(3):498–502CrossRefPubMedGoogle Scholar
  4. Barbau-Piednoir E, De Keersmaecker SCJ, Wuyts V, Gau C, Pirovano W, Costessi A, Philipp P, Roosens NH (2015) Genome sequence of EU-unauthorized genetically modified Bacillus subtilis strain 2014–3557 overproducing riboflavin, isolated from a vitamin B2 80% feed additive. Genome Announc 3(2)Google Scholar
  5. Becker J, Wittmann C (2012) Systems and synthetic metabolic engineering for amino acid production—the heartbeat of industrial strain development. Curr Opin Biotechnol 23(5):718–726CrossRefPubMedGoogle Scholar
  6. Becker J, Zelder O, Häfner S, Schröder H, Wittmann C (2011) From zero to hero—design-based systems metabolic engineering of Corynebacterium glutamicum for l-lysine production. Metab Eng 13(2):159–168CrossRefPubMedGoogle Scholar
  7. Bretzel W, Schurter W, Ludwig B, Kupfer E, Doswald S, Pfister M, van Loon A (1999) Commercial riboflavin production by recombinant Bacillus subtilis: down-stream processing and comparison of the composition of riboflavin produced by fermentation or chemical synthesis. J Ind Microbiol Biotechnol 22(1):19–26CrossRefGoogle Scholar
  8. Buey RM, Ledesma-Amaro R, Balsera M, de Pereda JM, Revuelta JL (2015) Increased riboflavin production by manipulation of inosine 5′-monophosphate dehydrogenase in Ashbya gossypii. Appl Microbiol Biotechnol 99(22):9577–9589CrossRefPubMedGoogle Scholar
  9. Capozzi V, Menga V, Digesu AM, De Vita P, van Sinderen D, Cattivelli L, Fares C, Spano G (2011) Biotechnological production of vitamin B2-enriched bread and pasta. J Agric Food Chem 59(14):8013–8020CrossRefPubMedGoogle Scholar
  10. Coquard D, Huecas M, Ott M, vanDijl JM, VanLoon A, Hohmann HP (1997) Molecular cloning and characterisation of the ribC gene from Bacillus subtilis: a point mutation in ribC results in riboflavin overproduction. Mol Gen Genet 254(1):81–84CrossRefPubMedGoogle Scholar
  11. Demain AL (1972) Riboflavin oversynthesis. Annu Rev Microbiol 26:369CrossRefPubMedGoogle Scholar
  12. Dmytruk K, Lyzak O, Yatsyshyn V, Kluz M, Sibirny V, Puchalski C, Sibirny A (2014) Construction and fed-batch cultivation of Candida famata with enhanced riboflavin production. J Biotechnol 172:11–17CrossRefPubMedGoogle Scholar
  13. DSM (2006) Fermentative preparation of riboflavin involving recycling of lysed biomass as nutrient medium. Patent EP 1 731 617 A1, 13 Dec 2006Google Scholar
  14. DSM (2015) DSM in Grenzach - Historie. Accessed 05.10. 2015
  15. Duan YX, Chen T, Chen X, Zhao XM (2010) Overexpression of glucose-6-phosphate dehydrogenase enhances riboflavin production in Bacillus subtilis. Appl Microbiol Biotechnol 85(6):1907–1914CrossRefPubMedGoogle Scholar
  16. Eggersdorfer M, Laudert D, Létinois U, McClymont T, Medlock J, Netscher T, Bonrath W (2012) One hundred years of vitamins—a success story of the natural sciences. Angew Chem Int Ed Engl 51(52):12960–12990CrossRefPubMedGoogle Scholar
  17. Fischer M, Bacher A (2005) Biosynthesis of flavocoenzymes. Nat Prod Rep 22(3):324–350CrossRefPubMedGoogle Scholar
  18. Food and Nutrition Board (1998) Riboflavin. Dietary reference intakes: thiamin, riboflavin, niacin, vitamin B6, vitamin B12, pantothenic acid, biotin, folate and choline. The National Academies Press, WashingtonGoogle Scholar
  19. Förster C, Santos MA, Ruffert S, Krämer R, Revuelta JL (1999) Physiological consequence of disruption of the VMA1 gene in the riboflavin overproducer Ashbya gossypii. J Biol Chem 274(14):9442–9448CrossRefPubMedGoogle Scholar
  20. Grimmer J, Kiefer H, Martin C (1993) Method of purifying ferment-produced riboflavin. Patent US 5,210,023 A, 01 July 1991Google Scholar
  21. Gutiérrez-Preciado A, Torres AG, Merino E, Bonomi HR, Goldbaum FA, García-Angulo VA (2015) Extensive identification of bacterial riboflavin transporters and their distribution across bacterial species. PLoS One 10(5):e0126124PubMedCentralCrossRefPubMedGoogle Scholar
  22. Hemberger S, Pedrolli DB, Stolz J, Vogl C, Lehmann M, Mack M (2011) RibM from Streptomyces davawensis is a riboflavin/roseoflavin transporter and may be useful for the optimization of riboflavin production strains. BMC Biotechnol 11Google Scholar
  23. Henry CS, Zinner JF, Cohoon MP, Stevens RL (2009) iBsu1103: a new genome-scale metabolic model of Bacillus subtilis based on SEED annotations. Genome Biol 10(6):R69PubMedCentralCrossRefPubMedGoogle Scholar
  24. Higashitsuji Y, Angerer A, Berghaus S, Hobl B, Mack M (2007) RibR, a possible regulator of the Bacillus subtilis riboflavin biosynthetic operon, in vivo interacts with the 5′-untranslated leader of rib mRNA. FEMS Microbiol Lett 274(1):48–54CrossRefPubMedGoogle Scholar
  25. Hohmann HP, Mouncey NJ, Sauer U, Zamboni N (2011) Fermentation process. Patent EP 1 481 064 B1, 20 Feb 2003Google Scholar
  26. Hümbelin M, Griesser V, Keller T, Schurter W, Haiker M, Hohmann HP, Ritz H, Richter G, Bacher A, van Loon A (1999) GTP cyclohydrolase II and 3,4-dihydroxy-2-butanone 4-phosphate synthase are rate-limiting enzymes in riboflavin synthesis of an industrial Bacillus subtilis strain used for riboflavin production. J Ind Microbiol Biotechnol 22(1):1–7CrossRefGoogle Scholar
  27. Jeong B-Y, Wittmann C, Kato T, Park EY (2015) Comparative metabolic flux analysis of an Ashbya gossypii wild type strain and a high riboflavin-producing mutant strain. J Biosci Bioeng 119(1):101–106CrossRefPubMedGoogle Scholar
  28. Jiménez A, Santos MA, Pompejus M, Revuelta JL (2005) Metabolic engineering of the purine pathway for riboflavin production in Ashbya gossypii. Appl Microbiol Biotechnol 71(10):5743–5751Google Scholar
  29. Jiménez A, Santos MA, Revuelta JL (2008) Phosphoribosyl pyrophosphate synthetase activity affects growth and riboflavin production in Ashbya gossypii. BMC Biotechnol 8Google Scholar
  30. Karrer P, Schöpp K, Benz F, Pfaehler K (1935) Synthesen von Flavinen III. Helv Chim Acta 18(1):69–79CrossRefGoogle Scholar
  31. Kato T, Park EY (2012) Riboflavin production by Ashbya gossypii. Biotechnol Lett 34(4):611–618CrossRefPubMedGoogle Scholar
  32. Kind S, Kreye S, Wittmann C (2011) Metabolic engineering of cellular transport for overproduction of the platform chemical 1,5-diaminopentane in Corynebacterium glutamicum. Metab Eng 13(5):617–627CrossRefPubMedGoogle Scholar
  33. Kirchner F, Mauch K, Schmid J (2014) Process for the production of riboflavin. Patent US 8,759,024 B2, 24 June 2014Google Scholar
  34. Knorr B, Schlieker H, Hohmann H-P, Weuster-Botz D (2007) Scale-down and parallel operation of the riboflavin production process with Bacillus subtilis. Chem Eng J Bioch Eng 33(3):263–274CrossRefGoogle Scholar
  35. Kuhn R (1936) Lactoflavin (vitamin B2). Angew Chem 49(1):6–10CrossRefGoogle Scholar
  36. Kuhn R, György P, Wagner-Jauregg T (1933a) Über Lactoflavin, den Farbstoff der Molke. Ber Dtsch Chem Ges 66(7):1034–1038CrossRefGoogle Scholar
  37. Kuhn R, György P, Wagner-Jauregg T (1933b) Über Ovoflavin, den Farbstoff des Eiklars. Ber Dtsch Chem Ges 66(4):576–580CrossRefGoogle Scholar
  38. Ledesma-Amaro R, Kerkhoven EJ, Luis Revuelta J, Nielsen J (2014) Genome scale metabolic modeling of the riboflavin overproducer Ashbya gossypii. Biotechnol Bioeng 111(6):1191–1199CrossRefPubMedGoogle Scholar
  39. Ledesma-Amaro R, Serrano-Amatriain C, Jimenez A, Revuelta JL (2015) Metabolic engineering of riboflavin production in Ashbya gossypii through pathway optimization. Microb Cell Fact 14(1):163PubMedCentralCrossRefPubMedGoogle Scholar
  40. Lee K, Park Y, Han J, Park J, Choi H (2004) Microorganism for producing riboflavin and method for producing riboflavin using the same. Patent US2004/0110249A1, 10.06.2004Google Scholar
  41. Lee KH, Park JH, Kim TY, Kim HU, Lee SY (2007) Systems metabolic engineering of Escherichia coli for L-threonine production. Mol Syst Biol 3Google Scholar
  42. Lin ZQ, Xu ZB, Li YF, Wang ZW, Chen T, Zhao XM (2014) Metabolic engineering of Escherichia coli for the production of riboflavin. Microb Cell Fact 13Google Scholar
  43. Mack M, van Loon A, Hohmann HP (1998) Regulation of riboflavin biosynthesis in Bacillus subtilis is affected by the activity of the flavokinase/flavin adenine dinucleotide synthetase encoded by ribC. J Bacteriol 180(4):950–955PubMedCentralPubMedGoogle Scholar
  44. Malzahn RC, Phillips RF, Hanson AM (1959) Riboflavin process. Patent US 2,876,169, 03.03.1959Google Scholar
  45. Man ZW, Rao ZM, Cheng YP, Yang TW, Zhang X, Xu MJ, Xu ZH (2014) Enhanced riboflavin production by recombinant Bacillus subtilis RF1 through the optimization of agitation speed. World J Microb Biot 30(2):661–667CrossRefGoogle Scholar
  46. Massey V (2000) The chemical and biological versatility of riboflavin. Biochem Soc Trans 28:283–296CrossRefPubMedGoogle Scholar
  47. Mateos L, Jiménez A, Revuelta JL, Santos MA (2006) Purine biosynthesis, riboflavin production, and trophic-phase span are controlled by a Myb-related transcription factor in the fungus Ashbya gossypii. Appl Environ Microbiol 72(7):5052–5060PubMedCentralCrossRefPubMedGoogle Scholar
  48. Matsui H, Sato K, Enei H, Hirose Y (1977) Mutation of an inosine-producing strain of Bacillus subtilis to dl-methionine sulfoxide resistance for guanosine production. Appl Environ Microbiol 34(4):337–341PubMedCentralPubMedGoogle Scholar
  49. Matsui H, Sato K, Enei H, Hirose Y (1979) Production of guanosine by psicofuranine and decoyinine resistant mutants of Bacillus subtilis. Agric Biol Chem 43(8):1739–1744CrossRefGoogle Scholar
  50. Ming H, Pizarro AVL, Park EY (2003) Application of waste activated bleaching earth containing rapeseed oil on riboflavin production in the culture of Ashbya gossypii. Biotechnol Progr 19(2):410–417CrossRefGoogle Scholar
  51. Mironov AS, Gusarov I, Rafikov R, Lopez LE, Shatalin K, Kreneva RA, Perumov DA, Nudler E (2002) Sensing small molecules by nascent RNA: a mechanism to control transcription in bacteria. Cell 111(5):747–756CrossRefPubMedGoogle Scholar
  52. Mitra S, Thawrani D, Banerjee P, Gachhui R, Mukherjee J (2012) Induced biofilm cultivation enhances riboflavin production by an intertidally derived Candida famata. Appl Biochem Biotechnol 166(8):1991–2006CrossRefPubMedGoogle Scholar
  53. Miyamoto Y, Sancar A (1998) Vitamin B2-based blue-light photoreceptors in the retinohypothalamic tract as the photoactive pigments for setting the circadian clock in mammals. PNAS 95(11):6097–6102PubMedCentralCrossRefPubMedGoogle Scholar
  54. Monschau N, Sahm H, Stahmann KP (1998) Threonine aldolase overexpression plus threonine supplementation enhanced riboflavin production in Ashbya gossypii. Appl Environ Microbiol 64(11):4283–4290PubMedCentralPubMedGoogle Scholar
  55. Northrop-Clewes CA, Thurnham DI (2012) The discovery and characterization of riboflavin. Ann Nutr Metab 61(3):224–230CrossRefPubMedGoogle Scholar
  56. Oh Y-K, Palsson BO, Park SM, Schilling CH, Mahadevan R (2007) Genome-scale reconstruction of metabolic network in Bacillus subtilis based on high-throughput phenotyping and gene essentiality data. J Biol Chem 282(39):28791–28799CrossRefPubMedGoogle Scholar
  57. O'Neil MJ (2006) Riboflavin. In: O'Neil MJ (ed) The Merck Index—Encyclopedia of chemicals, drugs & biologicals, vol 14. Whitehouse Station, New Jersey, p 1413Google Scholar
  58. Park EY, Ming H (2004) Oxidation of rapeseed oil in waste activated bleaching earth and its effect on riboflavin production in culture of Ashbya gossypii. J Biosci Bioeng 97(1):59–64CrossRefPubMedGoogle Scholar
  59. Park EY, Kato A, Ming H (2004) Utilization of waste activated bleaching earth containing palm oil in riboflavin production by Ashbya gossypii. J Am Oil Chem Soc 81(1):57–62CrossRefGoogle Scholar
  60. Park EY, Ito Y, Nariyama M, Sugimoto T, Lies D, Kato T (2011) The improvement of riboflavin production in Ashbya gossypii via disparity mutagenesis and DNA microarray analysis. Appl Microbiol Biotechnol 91(5):1315–1326CrossRefPubMedGoogle Scholar
  61. Pedrolli DB, Kühm C, Sévin DC, Vockenhuber MP, Sauer U, Suess B, Mack M (2015) A dual control mechanism synchronizes riboflavin and sulphur metabolism in Bacillus subtilis. PNASGoogle Scholar
  62. Perkins JB, Sloma A, Hermann T, Theriault K, Zachgo E, Erdenberger T, Hannett N, Chatterjee NP, Williams V, Rufo GA, Hatch R, Pero J (1999) Genetic engineering of Bacillus subtilis for the commercial production of riboflavin. J Ind Microbiol Biotechnol 22(1):8–18CrossRefGoogle Scholar
  63. Richter G, Fischer M, Krieger C, Eberhardt S, Luttgen H, Gerstenschlager I, Bacher A (1997) Biosynthesis of riboflavin: characterization of the bifunctional deaminase-reductase of Escherichia coli and Bacillus subtilis. J Bacteriol 179(6):2022–2028PubMedCentralPubMedGoogle Scholar
  64. Rühl M, Zamboni N, Sauer U (2010) Dynamic flux responses in riboflavin overproducing Bacillus subtilis to increasing glucose limitation in fed-batch culture. Biotechnol Bioeng 105(4):795–804PubMedGoogle Scholar
  65. Russo P, Capozzi V, Arena MP, Spadaccino G, Teresa Duenas M, Lopez P, Fiocco D, Spano G (2014) Riboflavin-overproducing strains of Lactobacillus fermentum for riboflavin-enriched bread. Appl Microbiol Biotechnol 98(8):3691–3700CrossRefPubMedGoogle Scholar
  66. Sahm H, Antranikian G, Stahmann K-P, Takors R (2013) Riboflavin (vitamin B2). In: Sahm H, Antranikian G, Stahmann K-P, Takors R (eds) Industrielle Mikrobiologie. Springer-Verlag, Berlin-Heidelberg, pp 132–140Google Scholar
  67. Sauer U, Hatzimanikatis V, Bailey JE, Hochuli M, Szyperski T, Wüthrich K (1997) Metabolic fluxes in riboflavin-producing Bacillus subtilis. Nat Biotechnol 15(5):448–452CrossRefPubMedGoogle Scholar
  68. Schlösser T, Wiesenburg A, Gaetgens C, Funke A, Viets U, Vijayalakshmi S, Nieland S, Stahmann KP (2007) Growth stress triggers riboflavin overproduction in Ashbya gossypii. Appl Microbiol Biotechnol 76(3):569–578CrossRefPubMedGoogle Scholar
  69. Schlüpen C, Santos MA, Weber U, de Graaf A, Revuelta JL, Stahmann KP (2003) Disruption of the SHM2 gene, encoding one of two serine hydroxymethyltransferase isoenzymes, reduces the flux from glycine to serine in Ashbya gossypii. Biochem J 369:263–273PubMedCentralCrossRefPubMedGoogle Scholar
  70. Schmidt G, Stahmann KP, Kaesler B, Sahm H (1996a) Correlation of isocitrate lyase activity and riboflavin formation in the riboflavin overproducer Ashbya gossypii. Microbiol 142:419–426CrossRefGoogle Scholar
  71. Schmidt G, Stahmann KP, Sahm H (1996b) Inhibition of purified isocitrate lyase identified itaconate and oxalate as potential antimetabolites for the riboflavin. Microbiol-Sgm 142:411–417CrossRefGoogle Scholar
  72. Shi SB, Chen T, Zhang ZG, Chen X, Zhao XM (2009a) Transcriptome analysis guided metabolic engineering of Bacillus subtilis for riboflavin production. Metab Eng 11(4–5):243–252CrossRefPubMedGoogle Scholar
  73. Shi SB, Shen Z, Chen X, Chen T, Zhao XM (2009b) Increased production of riboflavin by metabolic engineering of the purine pathway in Bacillus subtilis. Biochem Eng J 46(1):28–33CrossRefGoogle Scholar
  74. Shi T, Wang YC, Wang ZW, Wang GL, Liu DY, Fu J, Chen T, Zhao XM (2014) Deregulation of purine pathway in Bacillus subtilis and its use in riboflavin biosynthesis. Microb Cell Fact 13Google Scholar
  75. Silva R, Aguiar TQ, Domingues L (2015) Blockage of the pyrimidine biosynthetic pathway affects riboflavin production in Ashbya gossypii. J Biotechnol 193:37–40CrossRefPubMedGoogle Scholar
  76. Stahmann KP, Böddecker T, Sahm H (1997) Regulation and properties of a fungal lipase showing interfacial inactivation by gas bubbles, or droplets of lipid or fatty acid. Eur J Biochem 244(1):220–225CrossRefPubMedGoogle Scholar
  77. Stahmann KP, Revuelta JL, Seulberger H (2000) Three biotechnical processes using Ashbya gossypii, Candida famata, or Bacillus subtilis compete with chemical riboflavin production. Appl Microbiol Biotechnol 53(5):509–516CrossRefPubMedGoogle Scholar
  78. Storhas W, Metz R (2006) Riboflavin—vitamin B2. In: Heinzle E, Biwer A, Cooney C (eds) Development of sustainable bioprocesses: modeling and assessment. John Wiley & Sons, Ltd., New Jersey, pp 167–177Google Scholar
  79. Sugimoto T, Kanamasa S, Kato T, Park EY (2009) Importance of malate synthase in the glyoxylate cycle of Ashbya gossypii for the efficient production of riboflavin. Appl Microbiol Biotechnol 83(3):529–539CrossRefPubMedGoogle Scholar
  80. Sugimoto T, Morimoto A, Nariyama M, Kato T, Park EY (2010) Isolation of an oxalate-resistant Ashbya gossypii strain and its improved riboflavin production. J Ind Microbiol Biotechnol 37(1):57–64PubMedCentralCrossRefPubMedGoogle Scholar
  81. Taniguchi H, Wendisch VF (2015) Exploring the role of sigma factor gene expression on production by Corynebacterium glutamicum: sigma factor H and FMN as example. Front Microbiol 6Google Scholar
  82. Tanner JFW, Wickerham LJ, Van Lanen JM (1948) Biological process for the production of riboflavin. Patent US 2,445,128, 13.07.1948Google Scholar
  83. Tännler S, Zamboni N, Kiraly C, Aymerich S, Sauer U (2008) Screening of Bacillus subtilis transposon mutants with altered riboflavin production. Metab Eng 10(5):216–226CrossRefPubMedGoogle Scholar
  84. Wang GL, Bai L, Wang ZW, Shi T, Chen T, Zhao XM (2014) Enhancement of riboflavin production by deregulating gluconeogenesis in Bacillus subtilis. World J Microbiol Biotechnol 30(6):1893–1900CrossRefPubMedGoogle Scholar
  85. Wolf R, Reiff F, Wittmann R, Butzke J (1983) Verfahren zur Herstellung von Riboflavin. Patent EP 0 020 959 B1, 29 June 1983Google Scholar
  86. Yakimov AP, Seregina TA, Kholodnyak AA, Kreneva RA, Mironov AS, Perumov DA, Timkovskii AL (2014) Possible function of the ribT gene of Bacillus subtilis: theoretical prediction, cloning, and expression. Acta Nat 6(3):106–109Google Scholar
  87. Zamboni N, Mouncey N, Hohmann HP, Sauer U (2003) Reducing maintenance metabolism by metabolic engineering of respiration improves riboflavin production by Bacillus subtilis. Metab Eng 5(1):49–55CrossRefPubMedGoogle Scholar
  88. Zhu Y, Chen X, Chen T, Shi S, Zhao X (2006) Over-expression of glucose dehydrogenase improves cell growth and riboflavin production in Bacillus subtilis. Biotechnol Lett 28(20):1667–1672CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Susanne Katharina Schwechheimer
    • 1
  • Enoch Y. Park
    • 2
  • José Luis Revuelta
    • 3
  • Judith Becker
    • 1
  • Christoph Wittmann
    • 1
    Email author
  1. 1.Institute of Systems BiotechnologySaarland UniversitySaarbrückenGermany
  2. 2.Laboratory of Biotechnology, Research Institute of Green Science and TechnologyShizuoka UniversityShizuokaJapan
  3. 3.Departamento de Microbiología y Genética, Metabolic Engineering GroupUniversidad de SalamancaSalamancaSpain

Personalised recommendations