Advertisement

Applied Microbiology and Biotechnology

, Volume 100, Issue 5, pp 2141–2151 | Cite as

Bacteriophage-encoded depolymerases: their diversity and biotechnological applications

  • Diana P. Pires
  • Hugo Oliveira
  • Luís D. R. Melo
  • Sanna Sillankorva
  • Joana AzeredoEmail author
Mini-Review

Abstract

Bacteriophages (phages), natural enemies of bacteria, can encode enzymes able to degrade polymeric substances. These substances can be found in the bacterial cell surface, such as polysaccharides, or are produced by bacteria when they are living in biofilm communities, the most common bacterial lifestyle. Consequently, phages with depolymerase activity have a facilitated access to the host receptors, by degrading the capsular polysaccharides, and are believed to have a better performance against bacterial biofilms, since the degradation of extracellular polymeric substances by depolymerases might facilitate the access of phages to the cells within different biofilm layers. Since the diversity of phage depolymerases is not yet fully explored, this is the first review gathering information about all the depolymerases encoded by fully sequenced phages. Overall, in this study, 160 putative depolymerases, including sialidases, levanases, xylosidases, dextranases, hyaluronidases, peptidases as well as pectate/pectin lyases, were found in 143 phages (43 Myoviridae, 47 Siphoviridae, 37 Podoviridae, and 16 unclassified) infecting 24 genera of bacteria. We further provide information about the main applications of phage depolymerases, which can comprise areas as diverse as medical, chemical, or food-processing industry.

Keywords

Bacteriophages Phage depolymerases Capsular polysaccharides Biofilms 

Notes

Acknowledgments

DPP acknowledges the financial support from the Portuguese Foundation for Science and Technology (FCT) through the grant SFRH/BD/76440/2011. SS is an FCT investigator (IF/01413/2013). The authors also thank FCT for the Strategic Project of the UID/BIO/04469/2013 unit, FCT and European Union funds (FEDER/COMPETE) for the project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

253_2015_7247_MOESM1_ESM.pdf (383 kb)
Table S1 (PDF 382 kb)

References

  1. Abdi-Ali A, Mohammadi-Mehr M, Agha Alaei Y (2006) Bactericidal activity of various antibiotics against biofilm-producing Pseudomonas aeruginosa. Int J Antimicrob Agents 27:196–200. doi: 10.1016/j.ijantimicag.2005.10.007 PubMedCrossRefGoogle Scholar
  2. Abedon ST, Kuhl SJ, Blasdel BG, Kutter EM (2011) Phage treatment of human infections. Bacteriophage 1:66–85. doi: 10.4161/bact.1.2.15845 PubMedCentralPubMedCrossRefGoogle Scholar
  3. Albrecht MT, Schiller NL (2005) Alginate lyase (AlgL) activity is required for alginate biosynthesis in Pseudomonas aeruginosa. J Bacteriol 187:3869–3872. doi: 10.1128/JB.187.11.3869-3872.2005 PubMedCentralPubMedCrossRefGoogle Scholar
  4. Alkawash MA, Soothill JS, Schiller NL (2006) Alginate lyase enhances antibiotic killing of mucoid Pseudomonas aeruginosa in biofilms. APMIS 114:131–138. doi: 10.1111/j.1600-0463.2006.apm_356.x PubMedCrossRefGoogle Scholar
  5. Andres D, Hanke C, Baxa U, Seul A, Barbirz S, Seckler R (2010) Tailspike interactions with lipopolysaccharide effect DNA ejection from phage P22 particles in vitro. J Biol Chem 285:36768–36775. doi: 10.1074/jbc.M110.169003 PubMedCentralPubMedCrossRefGoogle Scholar
  6. Baker JR, Dong S, Pritchard DG (2002) The hyaluronan lyase of Streptococcus pyogenes bacteriophage H4489A. Biochem J 365:317. doi: 10.1042/BJ20020149 PubMedCentralPubMedCrossRefGoogle Scholar
  7. Barbirz S, Müller JJ, Uetrecht C, Clark AJ, Heinemann U, Seckler R (2008) Crystal structure of Escherichia coli phage HK620 tailspike: podoviral tailspike endoglycosidase modules are evolutionarily related. Mol Microbiol 69:303–316. doi: 10.1111/j.1365-2958.2008.06311.x PubMedCrossRefGoogle Scholar
  8. Bartell PF, Orr TE, Lam GK (1966) Polysaccharide depolymerase associated with bacteriophage infection. J Bacteriol 92:56–62PubMedCentralPubMedGoogle Scholar
  9. Bayer AS, Speert DP, Park S, Tu J, Witt M, Nast CC, Norman DC (1991) Functional role of mucoid exopolysaccharide (alginate) in antibiotic-induced and polymorphonuclear leukocyte-mediated killing of Pseudomonas aeruginosa. Infect Immun 59:302–308PubMedCentralPubMedGoogle Scholar
  10. Beg QK, Kapoor M, Mahajan L, Hoondal GS (2001) Microbial xylanases and their industrial applications: a review. Appl Microbiol Biotechnol 56:326–338. doi: 10.1007/s002530100704 PubMedCrossRefGoogle Scholar
  11. Bertozzi Silva J, Sauvageau D (2014) Bacteriophages as antimicrobial agents against bacterial contaminants in yeast fermentation processes. Biotechnol Biofuels 7:123. doi: 10.1186/s13068-014-0123-9 PubMedCentralPubMedCrossRefGoogle Scholar
  12. Brooks JD, Flint SH (2008) Biofilms in the food industry: problems and potential solutions. Int J Food Sci Technol 43:2163–2176. doi: 10.1111/j.1365-2621.2008.01839.x CrossRefGoogle Scholar
  13. Candela T, Fouet A (2006) Poly-gamma-glutamate in bacteria. Mol Microbiol 60:1091–1098. doi: 10.1111/j.1365-2958.2006.05179.x PubMedCrossRefGoogle Scholar
  14. Capparelli R, Parlato M, Borriello G, Salvatore P, Iannelli D (2007) Experimental phage therapy against Staphylococcus aureus in mice. Antimicrob Agents Chemother 51:2765–2773. doi: 10.1128/AAC.01513-06 PubMedCentralPubMedCrossRefGoogle Scholar
  15. Chaffin DO, Mentele LM, Rubens CE (2005) Sialylation of group B streptococcal capsular polysaccharide is mediated by cpsK and is required for optimal capsule polymerization and expression. J Bacteriol 187:4615–4626. doi: 10.1128/JB.187.13.4615-4626.2005 PubMedCentralPubMedCrossRefGoogle Scholar
  16. Chua JE, Manning PA, Morona R (1999) The Shigella flexneri bacteriophage Sf6 tailspike protein (TSP)/endorhamnosidase is related to the bacteriophage P22 TSP and has a motif common to exo- and endoglycanases, and C-5 epimerases. Microbiology 145:1649–1659. doi: 10.1099/13500872-145-7-1649 PubMedCrossRefGoogle Scholar
  17. Clark LE, Mellette JR (1994) The use of hyaluronidase as an adjunct to surgical procedures. J Dermatol Surg Oncol 20:842–844. doi: 10.1111/j.1524-4725.1994.tb03718.x PubMedCrossRefGoogle Scholar
  18. Clementi F (1997) Alginate production by Azotobacter vinelandii. Crit Rev Biotechnol 17:327–361. doi: 10.3109/07388559709146618 PubMedCrossRefGoogle Scholar
  19. Clokie MR, Millard AD, Letarov AV, Heaphy S (2011) Phages in nature. Bacteriophage 1:31–45. doi: 10.4161/bact.1.1.14942 PubMedCentralPubMedCrossRefGoogle Scholar
  20. Cornelissen A, Ceyssens P-J, T’Syen J, Van Praet H, Noben J-P, Shaburova OV, Krylov VN, Volckaert G, Lavigne R (2011) The T7-related Pseudomonas putida phage φ15 displays virion-associated biofilm degradation properties. PLoS One 6:e18597. doi: 10.1371/journal.pone.0018597 PubMedCentralPubMedCrossRefGoogle Scholar
  21. Cornelissen A, Ceyssens P-J, Krylov VN, Noben J-P, Volckaert G, Lavigne R (2012) Identification of EPS-degrading activity within the tail spikes of the novel Pseudomonas putida phage AF. Virology 434:251–256. doi: 10.1016/j.virol.2012.09.030 PubMedCrossRefGoogle Scholar
  22. Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM (1995) Microbial biofilms. Annu Rev Microbiol 49:711–745. doi: 10.1146/annurev.mi.49.100195.003431 PubMedCrossRefGoogle Scholar
  23. Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science (80-) 284:1318–1322. doi: 10.1126/science.284.5418.1318 CrossRefGoogle Scholar
  24. Dahech I, Ben Ayed H, Belghith KS, Belghith H, Mejdoub H (2013) Microbial production of levanase for specific hydrolysis of levan. Int J Biol Macromol 60:128–133. doi: 10.1016/j.ijbiomac.2013.05.002 PubMedCrossRefGoogle Scholar
  25. Davey ME, O’toole GA (2000) Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 64:847–867. doi: 10.1128/MMBR.64.4.847-867.2000 PubMedCentralPubMedCrossRefGoogle Scholar
  26. Davidson IW, Lawson CJ, Sutherland IW (1977) An alginate lysate from Azotobacter vinelandii phage. J Gen Microbiol 98:223–229PubMedCrossRefGoogle Scholar
  27. Davies G, Henrissat B (1995) Structures and mechanisms of glycosyl hydrolases. Structure 3:853–859. doi: 10.1016/S0969-2126(01)00220-9 PubMedCrossRefGoogle Scholar
  28. Donlan RM (2001a) Biofilm formation: a clinically relevant microbiological process. Clin Infect Dis 33:1387–1392. doi: 10.1086/322972 PubMedCrossRefGoogle Scholar
  29. Donlan RM (2001b) Biofilms and device-associated infections. Emerg Infect Dis 7:277–281. doi: 10.3201/eid0702.700277 PubMedCentralPubMedCrossRefGoogle Scholar
  30. Donlan RM (2002) Biofilms: microbial life on surfaces. Emerg Infect Dis 8:881–890. doi: 10.3201/eid0809.020063 PubMedCentralPubMedCrossRefGoogle Scholar
  31. Drulis-Kawa Z, Majkowska-Skrobek G, Maciejewska B (2015) Bacteriophages and phage-derived proteins—application approaches. Curr Med Chem 22:1757–1773. doi: 10.2174/0929867322666150209152851 PubMedCentralPubMedCrossRefGoogle Scholar
  32. Eriksson U, Svenson SB, Lönngren J, Lindberg AA (1979) Salmonella phage glycanases: substrate specificity of the phage P22 endo-rhamnosidase. J Gen Virol 43:503–511. doi: 10.1099/0022-1317-43-3-503 PubMedCrossRefGoogle Scholar
  33. Flemming H-C, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633. doi: 10.1038/nrmicro2415 PubMedGoogle Scholar
  34. Flemming H-C, Neu TR, Wozniak DJ (2007) The EPS matrix: the “house of biofilm cells”. J Bacteriol 189:7945–7947. doi: 10.1128/JB.00858-07 PubMedCentralPubMedCrossRefGoogle Scholar
  35. Frirdich E, Whitfield C (2005) Characterization of Gla(KP), a UDP-galacturonic acid C4-epimerase from Klebsiella pneumoniae with extended substrate specificity. J Bacteriol 187:4104–4115. doi: 10.1128/JB.187.12.4104-4115.2005 PubMedCentralPubMedCrossRefGoogle Scholar
  36. Garron M-L, Cygler M (2010) Structural and mechanistic classification of uronic acid-containing polysaccharide lyases. Glycobiology 20:1547–1573. doi: 10.1093/glycob/cwq122 PubMedCrossRefGoogle Scholar
  37. Gerardy-Schahn R, Bethe A, Brennecke T, Mühlenhoff M, Eckhardt M, Ziesing S, Lottspeich F, Frosch M (1995) Molecular cloning and functional expression of bacteriophage PK1E-encoded endoneuraminidase Endo NE. Mol Microbiol 16:441–450. doi: 10.1111/j.1365-2958.1995.tb02409.x PubMedCrossRefGoogle Scholar
  38. Glonti T, Chanishvili N, Taylor PW (2010) Bacteriophage-derived enzyme that depolymerizes the alginic acid capsule associated with cystic fibrosis isolates of Pseudomonas aeruginosa. J Appl Microbiol 108:695–702. doi: 10.1111/j.1365-2672.2009.04469.x PubMedCrossRefGoogle Scholar
  39. Gualdi L, Hayre JK, Gerlini A, Bidossi A, Colomba L, Trappetti C, Pozzi G, Docquier J-D, Andrew P, Ricci S, Oggioni MR (2012) Regulation of neuraminidase expression in Streptococcus pneumoniae. BMC Microbiol 12:200. doi: 10.1186/1471-2180-12-200 PubMedCentralPubMedCrossRefGoogle Scholar
  40. Guenther S, Huwyler D, Richard S, Loessner MJ (2009) Virulent bacteriophage for efficient biocontrol of Listeria monocytogenes in ready-to-eat foods. Appl Environ Microbiol 75:93–100. doi: 10.1128/AEM.01711-08 PubMedCentralPubMedCrossRefGoogle Scholar
  41. Gupta R, Gupta N, Rathi P (2004) Bacterial lipases: an overview of production, purification and biochemical properties. Appl Microbiol Biotechnol 64:763–781. doi: 10.1007/s00253-004-1568-8 PubMedCrossRefGoogle Scholar
  42. Gutiérrez D, Martínez B, Rodríguez A, García P (2012) Genomic characterization of two Staphylococcus epidermidis bacteriophages with anti-biofilm potential. BMC Genomics 13:228. doi: 10.1186/1471-2164-13-228 PubMedCentralPubMedCrossRefGoogle Scholar
  43. Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2:95–108. doi: 10.1038/nrmicro821 PubMedCrossRefGoogle Scholar
  44. Hanlon GW, Denyer SP, Olliff CJ, Ibrahim LJ (2001) Reduction in exopolysaccharide viscosity as an aid to bacteriophage penetration through Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 67:2746–2753. doi: 10.1128/AEM.67.6.2746-2753.2001 PubMedCentralPubMedCrossRefGoogle Scholar
  45. Harper D, Parracho H, Walker J, Sharp R, Hughes G, Werthén M, Lehman S, Morales S (2014) Bacteriophages and biofilms. Antibiotics 3:270–284. doi: 10.3390/antibiotics3030270 CrossRefGoogle Scholar
  46. Hatch RA, Schiller NL (1998) Alginate lyase promotes diffusion of aminoglycosides through the extracellular polysaccharide of mucoid Pseudomonas aeruginosa. Antimicrob Agents Chemother 42:974–977PubMedCentralPubMedGoogle Scholar
  47. Hsu C-R, Lin T-L, Pan Y-J, Hsieh P-F, Wang J-T (2013) Isolation of a bacteriophage specific for a new capsular type of Klebsiella pneumoniae and characterization of its polysaccharide depolymerase. PLoS One 8:e70092. doi: 10.1371/journal.pone.0070092 PubMedCentralPubMedCrossRefGoogle Scholar
  48. Hughes KA, Sutherland IW, Clark J, Jones MV (1998a) Bacteriophage and associated polysaccharide depolymerases-novel tools for study of bacterial biofilms. J Appl Microbiol 85:583–590. doi: 10.1046/j.1365-2672.1998.853541.x PubMedCrossRefGoogle Scholar
  49. Hughes KA, Sutherland IW, Jones MV (1998b) Biofilm susceptibility to bacteriophage attack: the role of phage-borne polysaccharide depolymerase. Microbiology 144:3039–3047. doi: 10.1099/00221287-144-11-3039 PubMedCrossRefGoogle Scholar
  50. Hugouvieux-Cotte-Pattat N, Condemine G, Shevchik VE (2014) Bacterial pectate lyases, structural and functional diversity. Environ Microbiol Rep 6:427–440. doi: 10.1111/1758-2229.12166 PubMedCrossRefGoogle Scholar
  51. Hynes WL, Walton SL (2000) Hyaluronidases of gram-positive bacteria. FEMS Microbiol Lett 183:201–207. doi: 10.1111/j.1574-6968.2000.tb08958.x PubMedCrossRefGoogle Scholar
  52. Hynes WL, Hancock L, Ferretti JJ (1995) Analysis of a second bacteriophage hyaluronidase gene from Streptococcus pyogenes: evidence for a third hyaluronidase involved in extracellular enzymatic activity. Infect Immun 63:3015–3020PubMedCentralPubMedGoogle Scholar
  53. Jaeger KE, Ransac S, Dijkstra BW, Colson C, van Heuvel M, Misset O (1994) Bacterial lipases. FEMS Microbiol Rev 15:29–63. doi: 10.1111/j.1574-6976.1994.tb00121.x PubMedCrossRefGoogle Scholar
  54. Jiménez ER (2009) Dextranase in sugar industry: a review. Sugar Tech 11:124–134. doi: 10.1007/s12355-009-0019-3 CrossRefGoogle Scholar
  55. Juturu V, Wu JC (2012) Microbial xylanases: engineering, production and industrial applications. Biotechnol Adv 30:1219–1227. doi: 10.1016/j.biotechadv.2011.11.006 PubMedCrossRefGoogle Scholar
  56. Kim WS, Geider K (2000) Characterization of a viral EPS-depolymerase, a potential tool for control of fire blight. Phytopathology 90:1263–1268. doi: 10.1094/PHYTO.2000.90.11.1263 PubMedCrossRefGoogle Scholar
  57. Kim HS, Lee C-G, Lee EY (2011a) Alginate lyase: structure, property, and application. Biotechnol Bioprocess Eng 16:843–851. doi: 10.1007/s12257-011-0352-8 CrossRefGoogle Scholar
  58. Kim S, Oh D-B, Kang HA, Kwon O (2011b) Features and applications of bacterial sialidases. Appl Microbiol Biotechnol 91:1–15. doi: 10.1007/s00253-011-3307-2 PubMedCrossRefGoogle Scholar
  59. Kimura K, Itoh Y (2003) Characterization of poly-gamma-glutamate hydrolase encoded by a bacteriophage genome: possible role in phage infection of Bacillus subtilis encapsulated with poly-gamma-glutamate. Appl Environ Microbiol 69:2491–2497. doi: 10.1128/AEM.69.5.2491-2497.2003 PubMedCentralPubMedCrossRefGoogle Scholar
  60. Kulkarni N, Shendye A, Rao M (1999) Molecular and biotechnological aspects of xylanases. FEMS Microbiol Rev 23:411–456. doi: 10.1111/j.1574-6976.1999.tb00407.x PubMedCrossRefGoogle Scholar
  61. Kutateladze M, Adamia R (2010) Bacteriophages as potential new therapeutics to replace or supplement antibiotics. Trends Biotechnol 28:591–595. doi: 10.1016/j.tibtech.2010.08.001 PubMedCrossRefGoogle Scholar
  62. Kutter E, De Vos D, Gvasalia G, Alavidze Z, Gogokhia L, Kuhl S, Abedon ST (2010) Phage therapy in clinical practice: treatment of human infections. Curr Pharm Biotechnol 11:69–86. doi: 10.2174/138920110790725401 PubMedCrossRefGoogle Scholar
  63. Lewis AL, Lewis WG (2012) Host sialoglycans and bacterial sialidases: a mucosal perspective. Cell Microbiol 14:1174–1182. doi: 10.1111/j.1462-5822.2012.01807.x PubMedCrossRefGoogle Scholar
  64. Lin T-L, Hsieh P-F, Huang Y-T, Lee W-C, Tsai Y-T, Su P-A, Pan Y-J, Hsu C-R, Wu M-C, Wang J-T (2014) Isolation of a bacteriophage and its depolymerase specific for K1 capsule of Klebsiella pneumoniae: implication in typing and treatment. J Infect Dis 210:1734–1744. doi: 10.1093/infdis/jiu332 PubMedCrossRefGoogle Scholar
  65. Long GS, Bryant JM, Taylor PW, Luzio JP (1995) Complete nucleotide sequence of the gene encoding bacteriophage E endosialidase: implications for K1E endosialidase structure and function. Biochem J 309(Pt 2):543–550. doi: 10.1042/bj3090543 PubMedCentralPubMedCrossRefGoogle Scholar
  66. Lu TK, Collins JJ (2007) Dispersing biofilms with engineered enzymatic bacteriophage. Proc Natl Acad Sci U S A 104:11197–11202. doi: 10.1073/pnas.0704624104 PubMedCentralPubMedCrossRefGoogle Scholar
  67. Luna AJ, Wood TL, Chamakura KR, Kuty Everett GF (2013) Complete genome of Salmonella enterica serovar enteritidis myophage Marshall. Genome Announc. doi: 10.1128/genomeA.00867-13 PubMedCentralPubMedGoogle Scholar
  68. Mah TF, O’Toole GA (2001) Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9:34–39. doi: 10.1016/S0966-842X(00)01913-2 PubMedCrossRefGoogle Scholar
  69. Manzanares P, Vallés S, Ramòn D, Orejas M (2007) α-L-rhamnosidases: old and new insights. In: Polaina J, MacCabe AP (eds) Industrial enzymes. Springer Netherlands, Dordrecht, pp 117–140CrossRefGoogle Scholar
  70. Marvasi M, Visscher PT, Casillas Martinez L (2010) Exopolymeric substances (EPS) from Bacillus subtilis: polymers and genes encoding their synthesis. FEMS Microbiol Lett 313:1–9. doi: 10.1111/j.1574-6968.2010.02085.x PubMedCrossRefGoogle Scholar
  71. Matsuzaki S, Rashel M, Uchiyama J, Sakurai S, Ujihara T, Kuroda M, Ikeuchi M, Tani T, Fujieda M, Wakiguchi H, Imai S (2005) Bacteriophage therapy: a revitalized therapy against bacterial infectious diseases. J Infect Chemother 11:211–219. doi: 10.1007/s10156-005-0408-9 PubMedCrossRefGoogle Scholar
  72. McVay CS, Velásquez M, Fralick JA (2007) Phage therapy of Pseudomonas aeruginosa infection in a mouse burn wound model. Antimicrob Agents Chemother 51:1934–1938. doi: 10.1128/AAC.01028-06 PubMedCentralPubMedCrossRefGoogle Scholar
  73. Melo LDR, Sillankorva S, Ackermann H-W, Kropinski AM, Azeredo J, Cerca N (2014) Characterization of Staphylococcus epidermidis phage vB_SepS_SEP9—a unique member of the Siphoviridae family. Res Microbiol 165:679–685. doi: 10.1016/j.resmic.2014.09.012 PubMedCrossRefGoogle Scholar
  74. Miasnikov AN (1997) Characterization of a novel endo-levanase and its gene from Bacillus sp. L7. FEMS Microbiol Lett 154:23–28. doi: 10.1111/j.1574-6968.1997.tb12619.x PubMedCrossRefGoogle Scholar
  75. Michaud P, Da Costa A, Courtois B, Courtois J (2003) Polysaccharide lyases: recent developments as biotechnological tools. Crit Rev Biotechnol 23:233–266. doi: 10.1080/07388550390447043 PubMedCrossRefGoogle Scholar
  76. Monday SR, Schiller NL (1996) Alginate synthesis in Pseudomonas aeruginosa: the role of AlgL (alginate lyase) and AlgX. J Bacteriol 178:625–632PubMedCentralPubMedGoogle Scholar
  77. Morello E, Saussereau E, Maura D, Huerre M, Touqui L, Debarbieux L (2011) Pulmonary bacteriophage therapy on Pseudomonas aeruginosa cystic fibrosis strains: first steps towards treatment and prevention. PLoS One 6:e16963. doi: 10.1371/journal.pone.0016963 PubMedCentralPubMedCrossRefGoogle Scholar
  78. Murakami H, Kuramoto T, Mizutani K, Nakano H, Kitahata S (1992) Purification and some properties of a new levanase from Bacillus sp. No. 71. Biosci Biotechnol Biochem 56:608–613. doi: 10.1271/bbb.56.608 CrossRefGoogle Scholar
  79. Mushtaq N, Redpath MB, Luzio JP, Taylor PW (2004) Prevention and cure of systemic Escherichia coli K1 infection by modification of the bacterial phenotype. Antimicrob Agents Chemother 48:1503–1508. doi: 10.1128/AAC.48.5.1503-1508.2004 PubMedCentralPubMedCrossRefGoogle Scholar
  80. Mushtaq N, Redpath MB, Luzio JP, Taylor PW (2005) Treatment of experimental Escherichia coli infection with recombinant bacteriophage-derived capsule depolymerase. J Antimicrob Chemother 56:160–165. doi: 10.1093/jac/dki177 PubMedCrossRefGoogle Scholar
  81. O’Toole G, Kaplan HB, Kolter R (2000) Biofilm formation as microbial development. Annu Rev Microbiol 54:49–79. doi: 10.1146/annurev.micro.54.1.49 PubMedCrossRefGoogle Scholar
  82. Oliveira A, Sereno R, Azeredo J (2010) In vivo efficiency evaluation of a phage cocktail in controlling severe colibacillosis in confined conditions and experimental poultry houses. Vet Microbiol 146:303–308. doi: 10.1016/j.vetmic.2010.05.015 PubMedCrossRefGoogle Scholar
  83. Oliveira H, Melo LDR, Santos SB, Nóbrega FL, Ferreira EC, Cerca N, Azeredo J, Kluskens LD (2013) Molecular aspects and comparative genomics of bacteriophage endolysins. J Virol 87:4558–4570. doi: 10.1128/JVI.03277-12 PubMedCentralPubMedCrossRefGoogle Scholar
  84. Parsek MR, Singh PK (2003) Bacterial biofilms: an emerging link to disease pathogenesis. Annu Rev Microbiol 57:677–701. doi: 10.1146/annurev.micro.57.030502.090720 PubMedCrossRefGoogle Scholar
  85. Paton AM (1960) The role of Pseudomonas in plant disease. J Appl Bacteriol 23:526–532. doi: 10.1111/j.1365-2672.1960.tb00224.x CrossRefGoogle Scholar
  86. Petter JG, Vimr ER (1993) Complete nucleotide sequence of the bacteriophage K1F tail gene encoding endo-N-acylneuraminidase (endo-N) and comparison to an endo-N homolog in bacteriophage PK1E. J Bacteriol 175:4354–4363PubMedCentralPubMedGoogle Scholar
  87. Reid G (1999) Biofilms in infectious disease and on medical devices. Int J Antimicrob Agents 11:223–226. doi: 10.1016/S0924-8579(99)00020-5 PubMedCrossRefGoogle Scholar
  88. Ritz MP, Perl AL, Colquhoun JM, Chamakura KR, Kuty Everett GF (2013) Complete genome of bacillus subtilis myophage CampHawk. Genome Announc. doi: 10.1128/genomeA.00984-13
  89. Santos SB, Carvalho CM, Sillankorva S, Nicolau A, Ferreira EC, Azeredo J (2009) The use of antibiotics to improve phage detection and enumeration by the double-layer agar technique. BMC Microbiol 9:148. doi: 10.1186/1471-2180-9-148 PubMedCentralPubMedCrossRefGoogle Scholar
  90. Scholl D, Merril C (2005) The genome of bacteriophage K1F, a T7-like phage that has acquired the ability to replicate on K1 strains of Escherichia coli. J Bacteriol 187:8499–8503. doi: 10.1128/JB.187.24.8499-8503.2005 PubMedCentralPubMedCrossRefGoogle Scholar
  91. Scholl D, Rogers S, Adhya S, Merril CR (2001) Bacteriophage K1-5 encodes two different tail fiber proteins, allowing it to infect and replicate on both K1 and K5 strains of Escherichia coli. J Virol 75:2509–2515. doi: 10.1128/JVI.75.6.2509-2515.2001 PubMedCentralPubMedCrossRefGoogle Scholar
  92. Schwarzer D, Buettner FFR, Browning C, Nazarov S, Rabsch W, Bethe A, Oberbeck A, Bowman VD, Stummeyer K, Muhlenhoff M, Leiman PG, Gerardy-Schahn R (2012) A multivalent adsorption apparatus explains the broad host range of phage phi92: a comprehensive genomic and structural analysis. J Virol 86:10384–10398. doi: 10.1128/JVI.00801-12 PubMedCentralPubMedCrossRefGoogle Scholar
  93. Scorpio A, Chabot DJ, Day WA, O’brien DK, Vietri NJ, Itoh Y, Mohamadzadeh M, Friedlander AM (2007) Poly-gamma-glutamate capsule-degrading enzyme treatment enhances phagocytosis and killing of encapsulated Bacillus anthracis. Antimicrob Agents Chemother 51:215–222. doi: 10.1128/AAC.00706-06 PubMedCentralPubMedCrossRefGoogle Scholar
  94. Scorpio A, Tobery SA, Ribot WJ, Friedlander AM (2008) Treatment of experimental anthrax with recombinant capsule depolymerase. Antimicrob Agents Chemother 52:1014–1020. doi: 10.1128/AAC.00741-07 PubMedCentralPubMedCrossRefGoogle Scholar
  95. Severi E, Hood DW, Thomas GH (2007) Sialic acid utilization by bacterial pathogens. Microbiology 153:2817–2822. doi: 10.1099/mic.0.2007/009480-0 PubMedCrossRefGoogle Scholar
  96. Shi X, Zhu X (2009) Biofilm formation and food safety in food industries. Trends Food Sci Technol 20:407–413. doi: 10.1016/j.tifs.2009.01.054 CrossRefGoogle Scholar
  97. Sieiro C, García-Fraga B, López-Seijas J, da Silva AF, Villa TG (2012) Microbial Pectic Enzymes in the Food and Wine Industry. In: Valdez B (ed) Food Industrial Processes-Methods and Equipment. InTech, pp 201–218Google Scholar
  98. Sillankorva S, Neubauer P, Azeredo J (2008) Pseudomonas fluorescens biofilms subjected to phage phiIBB-PF7A. BMC Biotechnol 8:79. doi: 10.1186/1472-6750-8-79 PubMedCentralPubMedCrossRefGoogle Scholar
  99. Singh SK, Bharati AP, Singh N, Pandey P, Joshi P, Singh K, Mitra K, Gayen JR, Sarkar J, Akhtar MS (2014) The prophage-encoded hyaluronate lyase has broad substrate specificity and is regulated by the N-terminal domain. J Biol Chem 289:35225–35236. doi: 10.1074/jbc.M113.507673 PubMedCentralPubMedCrossRefGoogle Scholar
  100. Sulakvelidze A (2005) Phage therapy: an attractive option for dealing with antibiotic-resistant bacterial infections. Drug Discov Today 10:807–809. doi: 10.1016/S1359-6446(05)03441-0 PubMedCrossRefGoogle Scholar
  101. Sunna A, Antranikian G (1997) Xylanolytic enzymes from fungi and bacteria. Crit Rev Biotechnol 17:39–67. doi: 10.3109/07388559709146606 PubMedCrossRefGoogle Scholar
  102. Sutherland IW (1995) Polysaccharide lyases. FEMS Microbiol Rev 16:323–347PubMedCrossRefGoogle Scholar
  103. Tait K, Skillman LC, Sutherland IW (2002) The efficacy of bacteriophage as a method of biofilm eradication. Biofouling 18:305–311. doi: 10.1080/0892701021000034418 CrossRefGoogle Scholar
  104. Timoney JF, Pesante L, Ernst C (1982) Hyaluronidase associated with a temperate bacteriophage of Streptococcus equi. In: Schlessinger D (ed) Microbiology. American Society for Microbiology, Washington, DC, pp 145–146Google Scholar
  105. Traving C, Schauer R (1998) Structure, function and metabolism of sialic acids. Cell Mol Life Sci 54:1330–1349. doi: 10.1007/s000180050258 PubMedCrossRefGoogle Scholar
  106. Trigo G, Martins TG, Fraga AG, Longatto-Filho A, Castro AG, Azeredo J, Pedrosa J (2013) Phage therapy is effective against infection by Mycobacterium ulcerans in a murine footpad model. PLoS Negl Trop Dis 7:e2183. doi: 10.1371/journal.pntd.0002183 PubMedCentralPubMedCrossRefGoogle Scholar
  107. Vu B, Chen M, Crawford RJ, Ivanova EP (2009) Bacterial extracellular polysaccharides involved in biofilm formation. Molecules 14:2535–2554. doi: 10.3390/molecules14072535 PubMedCrossRefGoogle Scholar
  108. Wong TY, Preston LA, Schiller NL (2000) Alginate lyase: review of major sources and enzyme characteristics, structure-function analysis, biological roles, and applications. Annu Rev Microbiol 54:289–340. doi: 10.1146/annurev.micro.54.1.289 PubMedCrossRefGoogle Scholar
  109. Yadav V, Yadav PK, Yadav S, Yadav KDS (2010) α-l-Rhamnosidase: a review. Process Biochem 45:1226–1235. doi: 10.1016/j.procbio.2010.05.025 CrossRefGoogle Scholar
  110. Yan J, Mao J, Mao J, Xie J (2014) Bacteriophage polysaccharide depolymerases and biomedical applications. BioDrugs 28:265–274. doi: 10.1007/s40259-013-0081-y PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Diana P. Pires
    • 1
  • Hugo Oliveira
    • 1
  • Luís D. R. Melo
    • 1
  • Sanna Sillankorva
    • 1
  • Joana Azeredo
    • 1
    Email author
  1. 1.Centre of Biological EngineeringUniversity of MinhoBragaPortugal

Personalised recommendations