Applied Microbiology and Biotechnology

, Volume 100, Issue 5, pp 2063–2072 | Cite as

Bacterial nanocellulose production and application: a 10-year overview

  • Angela Faustino JozalaEmail author
  • Leticia Celia de Lencastre-Novaes
  • André Moreni Lopes
  • Valéria de Carvalho Santos-Ebinuma
  • Priscila Gava Mazzola
  • Adalberto Pessoa-Jr
  • Denise Grotto
  • Marli Gerenutti
  • Marco Vinicius Chaud


Production of bacterial nanocellulose (BNC) is becoming increasingly popular owing to its environmentally friendly properties. Based on this benefit of BNC production, researchers have also begun to examine the capacity for cellulose production through microbial hosts. Indeed, several research groups have developed processes for BNC production, and many studies have been published to date, with the goal of developing methods for large-scale production. During BNC bioproduction, the culture medium represents approximately 30 % of the total cost. Therefore, one important and challenging aspect of the fermentation process is identification of a new cost-effective culture medium that can facilitate the production of high yields within short periods of time, thereby improving BNC production and permitting application of BNC in the biotechnological, medical, pharmaceutical, and food industries. In this review, we addressed different aspects of BNC production, including types of fermentation processes and culture media, with the aim of demonstrating the importance of these parameters.


Bacterial nanocellulose Biopolymers Biomaterial Bioprocess Bioproducts Fermentation process Gluconacetobacter xylinus 



The authors received grants from the Coordination for Higher Level Graduate Improvements (CAPES/Brazil), National Council for Scientific and Technological Development (CNPq/Brazil), and State of São Paulo Research Foundation (FAPESP/Brazil, process numbers 2009/14897-7 and 2013/08617-7).

Compliance with ethical standards

Ethical statement/conflict of interest

The authors, whose names appear on the submission, declare have contributed sufficiently to the scientific work and therefore share collective responsibility and accountability for the results. This manuscript has not been published or presented elsewhere in part or in entirety, and is not under consideration by another journal. There are no conflicts of interest to declare and this research not involved human participants or animals.

All the authors have approved the manuscript and agree with submission to your esteemed journal.


  1. Akhlaghi SP, Berry RC, Tam KC (2013) Surface modification of cellulose nanocrystal with chitosan oligosaccharide for drug delivery applications. Cellulose 20:1747–1764. doi: 10.1007/s10570-013-9954-y CrossRefGoogle Scholar
  2. Almeida IF, Pereira T, Silva NHCS, Gomes FP, Silvestre AJD, Freire CSR, Sousa Lobo JM, Costa PC (2014) Bacterial cellulose membranes as drug delivery systems: an in vivo skin compatibility study. Eur J Pharm Biopharm 86:332–336. doi: 10.1016/j.ejpb.2013.08.008 CrossRefPubMedGoogle Scholar
  3. Ashjaran A, Yazdanshenas ME, Rashidi A, Khajavi R, Rezaee A (2013) Overview of bio nanofabric from bacterial cellulose. J Text Inst 104:121–131. doi: 10.1080/00405000.2012.703796 CrossRefGoogle Scholar
  4. Bäckdahl H, Risberg B, Gatenholm P (2011) Observations on bacterial cellulose tube formation for application as vascular graft. Mater Sci Eng C 31:14–21. doi: 10.1016/j.msec.2010.07.010 CrossRefGoogle Scholar
  5. Basmaji P, de Olyveira GM, dos Santos ML, Guastaldi AC (2014) Novel antimicrobial peptides bacterial cellulose obtained by symbioses culture between polyhexanide biguanide (PHMB) and green tea. J Biomater Tissue Eng 4:59–64. doi: 10.1166/jbt.2014.1133 CrossRefGoogle Scholar
  6. Basta AH, El-Saied H (2009) Performance of improved bacterial cellulose application in the production of functional paper. J Appl Microbiol 107:2098–2107. doi: 10.1111/j.1365-2672.2009.04467.x CrossRefPubMedGoogle Scholar
  7. Cacicedo ML, Cesca K, Bosio VE, Porto LM, Castro GR (2015) Self-assembly of carrageenin–CaCO3 hybrid microparticles on bacterial cellulose films for doxorubicin sustained delivery. J Appl Biomed 13:239–248. doi: 10.1016/j.jab.2015.03.004 CrossRefGoogle Scholar
  8. Cai Z, Kim J (2009) Bacterial cellulose/poly(ethylene glycol) composite: characterization and first evaluation of biocompatibility. Cellulose 17:83–91. doi: 10.1007/s10570-009-9362-5 CrossRefGoogle Scholar
  9. Cakar F, Ozer I, Aytekin AÖ, Sahin F (2014) Improvement production of bacterial cellulose by semi-continuous process in molasses medium. Carbohydr Polym 106:7–13. doi: 10.1016/j.carbpol.2014.01.103 CrossRefPubMedGoogle Scholar
  10. Chawla PR, Bajaj IB, Survase SA, Singhal RS (2009) Microb Cellul : Fermentative Prod Appl 47:107–124Google Scholar
  11. Conley K, Godbout L, Whitehead MA, Tony, Van De Ven TGM (2016) Origin of the twist of cellulosic materials. Carbohydr Polym 135:285–299. doi: 10.1016/j.carbpol.2015.08.029 CrossRefPubMedGoogle Scholar
  12. Czaja W, Romanovicz D, Brown malcolm R (2004) Structural investigations of microbial cellulose produced in stationary and agitated culture. Cellulose 11:403–411. doi: 10.1023/B:CELL.0000046412.11983.61 CrossRefGoogle Scholar
  13. Czaja WK, Young DJ, Kawecki M, Brown RM (2007) The future prospects of microbial cellulose in biomedical applications 8:1–12Google Scholar
  14. de Azeredo HMC (2013) Antimicrobial nanostructures in food packaging. Trends Food Sci Technol 30:56–69. doi: 10.1016/j.tifs.2012.11.006 CrossRefGoogle Scholar
  15. Donini I, De Salvi D, Fukumoto F, Lustri W, Barud H, Marchetto R, Messaddeq Y, Ribeiro S (2010) Biossíntese e recentes avanços na produção de celulose bacteriana. Eclética Química 35:165–178CrossRefGoogle Scholar
  16. Erbas Kiziltas E, Kiziltas A, Blumentritt M, Gardner DJ (2015a) Biosynthesis of bacterial cellulose in the presence of different nanoparticles to create novel hybrid materials. Carbohydr Polym 129:148–155. doi: 10.1016/j.carbpol.2015.04.039 CrossRefPubMedGoogle Scholar
  17. Erbas Kiziltas E, Kiziltas A, Gardner DJ (2015b) Synthesis of bacterial cellulose using hot water extracted wood sugars. Carbohydr Polym 124:131–138. doi: 10.1016/j.carbpol.2015.01.036 CrossRefPubMedGoogle Scholar
  18. Fu L, Zhang J, Yang G (2013) Present status and applications of bacterial cellulose-based materials for skin tissue repair. Carbohydr Polym 92:1432–1442. doi: 10.1016/j.carbpol.2012.10.071 CrossRefPubMedGoogle Scholar
  19. Gomes FP, Silva NHCS, Trovatti E, Serafim LS, Duarte MF, Silvestre AJD, Neto CP, Freire CSR (2013) Production of bacterial cellulose by Gluconacetobacter sacchari using dry olive mill residue. Biomass Bioenergy 55:205–211. doi: 10.1016/j.biombioe.2013.02.004 CrossRefGoogle Scholar
  20. Hu Y, Catchmark JM (2010) Influence of 1-methylcyclopropene (1-MCP) on the production of bacterial cellulose biosynthesized by Acetobacter xylinum under the agitated culture. Lett Appl Microbiol 51:109–113. doi: 10.1111/j.1472-765X.2010.02866 PubMedGoogle Scholar
  21. Hu W, Chen S, Yang J, Li Z, Wang H (2014) Functionalized bacterial cellulose derivatives and nanocomposites. Carbohydr Polym 101:1043–1060. doi: 10.1016/j.carbpol.2013.09.102 CrossRefPubMedGoogle Scholar
  22. Huang C, Guo H-J, Xiong L, Wang B, Shi S-L, Chen X-F, Lin X-Q, Wang C, Luo J, Chen X-D (2016) Using wastewater after lipid fermentation as substrate for bacterial cellulose production by Gluconacetobacter xylinus. Carbohydr Polym 136:198–202. doi: 10.1016/j.carbpol.2015.09.043 CrossRefPubMedGoogle Scholar
  23. Jeon S, Yoo Y-M, Park J-W, Kim H-J, Hyun J (2014) Electrical conductivity and optical transparency of bacterial cellulose based composite by static and agitated methods. Curr Appl Phys 14:1621–1624. doi: 10.1016/j.cap.2014.07.010 CrossRefGoogle Scholar
  24. Jozala AF, Aparecida R, Pértile N, Alves C (2015) Bacterial cellulose production by Gluconacetobacter xylinus by employing alternative culture media. Appl Microbiol Biotechnol 99(3):1181–1190. doi: 10.1007/s00253-014-6232-3 CrossRefPubMedGoogle Scholar
  25. Jung H-I, Lee O-M, Jeong J-H, Jeon Y-D, Park K-H, Kim H-S, An W-G, Son H-J (2010) Production and characterization of cellulose by Acetobacter sp. V6 using a cost-effective molasses-corn steep liquor medium. Appl Biochem Biotechnol 162:486–497. doi: 10.1007/s12010-009-8759-9 CrossRefPubMedGoogle Scholar
  26. Keshk S, Sameshima K (2006) Influence of lignosulfonate on crystal structure and productivity of bacterial cellulose in a static culture. Enzym Microb Technol 40:4–8. doi: 10.1016/j.enzmictec.2006.07.037 CrossRefGoogle Scholar
  27. Keshk SM (2014) Bacterial cellulose production and its industrial applications. J Bioprocess Biotech 4:150. doi: 10.4172/2155-9821.1000150 CrossRefGoogle Scholar
  28. Kim SS, Lee SY, Park KJ, Park SM, An HJ, Hyun JM, Choi YH (2015) Gluconacetobacter sp. gel_ SEA623-2, bacterial cellulose producing bacterium isolated from citrus fruit juice. Saudi J Biol Sci. doi: 10.1016/j.sjbs.2015.09.031 Google Scholar
  29. Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed Engl 50:5438–5466. doi: 10.1002/anie.201001273 CrossRefPubMedGoogle Scholar
  30. Kralisch D, Hessler N, Klemm D, Erdmann R, Schmidt W (2010) White biotechnology for cellulose manufacturing - the HoLiR concept. Biotechnol Bioeng 105:740-747. doi: 10.1002/bit.22579
  31. Krystynowicz A, Czaja W, Wiktorowska-Jezierska A, Gonçalves-Miśkiewicz M, Turkiewicz M, Bielecki S (2002) Factors affecting the yield and properties of bacterial cellulose. J Ind Microbiol Biotechnol 29:189–195. doi: 10.1038/sj.jim.7000303 CrossRefPubMedGoogle Scholar
  32. Kuo C-H, Chen J-H, Liou B-K, Lee C-K (2015) Utilization of acetate buffer to improve bacterial cellulose production by Gluconacetobacter xylinus. Food Hydrocoll 53:98–103. doi: 10.1016/j.foodhyd.2014.12.034 CrossRefGoogle Scholar
  33. Kurosumi A, Sasaki C, Yamashita Y, Nakamura Y (2009) Utilization of various fruit juices as carbon source for production of bacterial cellulose by Acetobacter xylinum NBRC 13693. Carbohydr Polym 76:333–335. doi: 10.1016/j.carbpol.2008.11.009 CrossRefGoogle Scholar
  34. Lee K-Y, Buldum G, Mantalaris A, Bismarck A (2014) More than meets the eye in bacterial cellulose: biosynthesis, bioprocessing, and applications in advanced fiber composites. Macromol Biosci 14:10–32. doi: 10.1002/mabi.201300298 CrossRefPubMedGoogle Scholar
  35. Li Z, Wang L, Hua J, Jia S, Zhang J, Liu H (2015) Production of nano bacterial cellulose from waste water of candied jujube-processing industry using Acetobacter xylinum. Carbohydr Polym 120:115–119. doi: 10.1016/j.carbpol.2014.11.061 CrossRefPubMedGoogle Scholar
  36. Lin N, Dufresne A (2014) Nanocellulose in biomedicine: current status and future prospect. Eur Polym J 59:302–325. doi: 10.1016/j.eurpolymj.2014.07.025
  37. Lin D, Lopez-Sanchez P, Li R, Li Z (2014) Production of bacterial cellulose by Gluconacetobacter hansenii CGMCC 3917 using only waste beer yeast as nutrient source. Bioresour Technol 151:113–119. doi: 10.1016/j.biortech.2013.10.052 CrossRefPubMedGoogle Scholar
  38. Lu Z, Zhang Y, Chi Y, Xu N, Yao W, Sun B (2011) Effects of alcohols on bacterial cellulose production by Acetobacter xylinum 186. World J Microbiol Biotechnol 27:2281–2285. doi: 10.1007/s11274-011-0692-8 CrossRefGoogle Scholar
  39. Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577Google Scholar
  40. Mautner A, Lee K-Y, Tammelin T, Mathew AP, Nedoma AJ, Li K, Bismarck A (2015) Cellulose nanopapers as tight aqueous ultra-filtration membranes. React Funct Polym 86:209–214. doi: 10.1016/j.reactfunctpolym.2014.09.014
  41. Martínez-Sanz M, Lopez-Rubio A, Villano M, Oliveira CSS, Majone M, Reis M, Lagarón JM (2016) Production of bacterial nanobiocomposites of polyhydroxyalkanoates derived from waste and bacterial nanocellulose by the electrospinning enabling melt compounding method. J Appl Polym Sci 133. doi: 10.1002/app.42486
  42. Mohammadkazemi F, Azin M, Ashori A (2015) Production of bacterial cellulose using different carbon sources and culture media. Carbohydr Polym 117:518–523. doi: 10.1016/j.carbpol.2014.10.008 CrossRefPubMedGoogle Scholar
  43. Molina de Olyveira G, Maria Manzine Costa L, Basmaji P (2013) Physically modified bacterial cellulose as alternative routes for transdermal drug delivery. J Biomater Tissue Eng 3:227–232. doi: 10.1166/jbt.2013.1079 CrossRefGoogle Scholar
  44. Mikkelsen D, Flanagan BM, Dykes GA, Gidley MJ (2009) Influence of different carbon sources on bacterial cellulose production by Gluconacetobacter xylinus strain ATCC 53524. J Appl Microbiol 107:576–583. doi: 10.1111/j.1365-2672.2009.04226.x CrossRefPubMedGoogle Scholar
  45. Müller A, Ni Z, Hessler N, Wesarg F, Müller FA, Kralisch D, Fischer D (2013) The biopolymer bacterial nanocellulose as drug delivery system: investigation of drug loading and release using the model protein albumin. J Pharm Sci 102:579–592. doi: 10.1002/jps.23385 CrossRefPubMedGoogle Scholar
  46. Nimeskern L, Martínez Ávila H, Sundberg J, Gatenholm P, Müller R, Stok KS (2013) Mechanical evaluation of bacterial nanocellulose as an implant material for ear cartilage replacement. J Mech Behav Biomed Mater 22:12–21. doi: 10.1016/j.jmbbm.2013.03.005 CrossRefPubMedGoogle Scholar
  47. Numata Y, Mazzarino L, Borsali R (2015a) A slow-release system of bacterial cellulose gel and nanoparticles for hydrophobic active ingredients. Int J Pharm 486:217–225. doi: 10.1016/j.ijpharm.2015.03.068 CrossRefPubMedGoogle Scholar
  48. Numata Y, Sakata T, Furukawa H, Tajima K (2015b) Bacterial cellulose gels with high mechanical strength. Mater Sci Eng C Mater Biol Appl 47:57–62. doi: 10.1016/j.msec.2014.11.026 CrossRefPubMedGoogle Scholar
  49. Oliveira Barud HG, Barud Hda S, Cavicchioli M, do Amaral TS, de Oliveira Junior OB, Santos DM, Petersen AL, de OA, Celes F, Borges VM, de Oliveira CI, de Oliveira PF, Furtado RA, Tavares DC, SJL R (2015) Preparation and characterization of a bacterial cellulose/silk fibroin sponge scaffold for tissue regeneration. Carbohydr Polym 128:41–51. doi: 10.1016/j.carbpol.2015.04.007 CrossRefPubMedGoogle Scholar
  50. Padmanaban S, Balaji N, Muthukumaran C, Tamilarasan K (2015) Statistical optimization of process parameters for exopolysaccharide production by Aureobasidium pullulans using sweet potato based medium. Biotech 5:1067–1073. doi: 10.1007/s13205-015-0308-3 Google Scholar
  51. Rajwade JM, Paknikar KM, Kumbhar JV (2015) Applications of bacterial cellulose and its composites in biomedicine. Appl Microbiol Biotechnol 99:2491–2511. doi: 10.1007/s00253-015-6426-3 CrossRefPubMedGoogle Scholar
  52. Rehim SA, Singhal M, Chung KC (2014) Dermal skin substitutes for upper limb reconstruction. Hand Clin 30:239–252. doi: 10.1016/j.hcl.2014.02.001 PubMedCentralCrossRefPubMedGoogle Scholar
  53. Ruka DR, Simon GP, Dean KM (2012) Altering the growth conditions of Gluconacetobacter xylinus to maximize the yield of bacterial cellulose. Carbohydr Polym 89:613–622. doi: 10.1016/j.carbpol.2012.03.059 CrossRefPubMedGoogle Scholar
  54. Santos-Ebinuma VC, Roberto IC, Simas Teixeira MF, Pessoa A (2013) Improving of red colorants production by a new Penicillium purpurogenum strain in submerged culture and the effect of different parameters in their stability. Biotechnol Prog 29:778–785. doi: 10.1002/btpr.1720 CrossRefPubMedGoogle Scholar
  55. Schramm M, Hestrin S (1954) Factors affecting production of cellulose at the air/liquid interface of a culture of Acetobacter xylinum. J Gen Microbiol 11:123–129. doi: 10.1099/00221287-11-1-123 CrossRefPubMedGoogle Scholar
  56. Shah N, Ul-Islam M, Khattak WA, Park JK (2013) Overview of bacterial cellulose composites: a multipurpose advanced material. Carbohydr Polym 98:1585–1598. doi: 10.1016/j.carbpol.2013.08.018 CrossRefPubMedGoogle Scholar
  57. Shi Z, Zhang Y, Phillips GO, Yang G (2014) Utilization of bacterial cellulose in food. Food Hydrocoll 35:539–545. doi: 10.1016/j.foodhyd.2013.07.012 CrossRefGoogle Scholar
  58. Tanskul S, Amornthatree K, Jaturonlak N (2013) A new cellulose-producing bacterium, Rhodococcus sp. MI 2: screening and optimization of culture conditions. Carbohydr Polym 92:421–428. doi: 10.1016/j.carbpol.2012.09.017 CrossRefPubMedGoogle Scholar
  59. Thompson DN, Hamilton MA (2001) Production of bacterial cellulose from alternate feedstocks. Appl Biochem Biotechnol 91-93:503–514. doi: 10.1385/ABAB:91-93:1-9:503 CrossRefPubMedGoogle Scholar
  60. Trovatti E, Serafim LS, Freire CSR, Silvestre AJD, Neto CP (2011) Gluconacetobacter sacchari: an efficient bacterial cellulose cell-factory. Carbohydr Polym 86:1417–1420. doi: 10.1016/j.carbpol.2011.06.046 CrossRefGoogle Scholar
  61. Tyagi N, Suresh S (2015) Production of cellulose from sugarcane molasses using Gluconacetobacter intermedius SNT-1: optimization & characterization. J Clean Prod. doi: 10.1016/j.jclepro.2015.07.054 Google Scholar
  62. Wu J-M, Liu R-H (2012) Thin stillage supplementation greatly enhances bacterial cellulose production by Gluconacetobacter xylinus. Carbohydr Polym 90:116–121. doi: 10.1016/j.carbpol.2012.05.003 CrossRefPubMedGoogle Scholar
  63. Wu S-C, Li M-H (2015) Production of bacterial cellulose membranes in a modified airlift bioreactor by Gluconacetobacter xylinus. J Biosc Bioeng 120(4):444–449. doi: 10.1016/j.jbiosc.2015.02.018
  64. Zhang S, Winestrand S, Guo X, Chen L, Hong F, Jönsson LJ (2014) Effects of aromatic compounds on the production of bacterial nanocellulose by Gluconacetobacter xylinus. Microb Cell Factories 13:62. doi: 10.1186/1475-2859-13-62 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Angela Faustino Jozala
    • 1
    Email author
  • Leticia Celia de Lencastre-Novaes
    • 2
  • André Moreni Lopes
    • 3
  • Valéria de Carvalho Santos-Ebinuma
    • 4
  • Priscila Gava Mazzola
    • 2
  • Adalberto Pessoa-Jr
    • 3
  • Denise Grotto
    • 1
  • Marli Gerenutti
    • 1
  • Marco Vinicius Chaud
    • 1
  1. 1.Department of Technological and Environmental ProcessesUniversidade de Sorocaba – UNISOSorocabaBrazil
  2. 2.Faculty of Pharmaceutical SciencesUniversidade de Campinas, UNICAMPCampinasBrazil
  3. 3.Department of Biochemical and Pharmaceutical TechnologySchool of Pharmaceutical Sciences, USPSão PauloBrazil
  4. 4.Department of Bioprocess and Biotechnology, School of Pharmaceutical SciencesUniversidade Estadual Paulista – UNESPAraraquaraBrazil

Personalised recommendations