Advertisement

Applied Microbiology and Biotechnology

, Volume 100, Issue 10, pp 4485–4494 | Cite as

Dysbiosis of the fecal microbiota in the TNBS-induced Crohn’s disease mouse model

  • Qing He
  • Xiaoping Li
  • Chuan Liu
  • Lili Su
  • Zhongkui Xia
  • Xin Li
  • Ying Li
  • Lingling Li
  • Ting Yan
  • Qiang Feng
  • Liang Xiao
Applied genetics and molecular biotechnology

Abstract

Crohn’s disease (CD) is characterized by chronic transmural inflammation. The symptom of the mice model induced by 2,4,6-trinitrobenzenesulfonic acid (TNBS) is closed to human under CD condition, so this kind of animal is widely used in the related researches. Although the dysbiosis of the fecal microbiota has been proved to play an important role in the patients with CD, the composition of the gastrointestinal microbiota in the mouse model under disease condition is still unclear. In the current study, male 7-week BALB/c mice were anesthetized and intrarectal administrated by ethanol (ET group), TNBS in ethanol (TN group), and phosphate buffered saline (PBS) (CK group) as control. The symptoms of individuals under the CD condition were observed, and the changes of the bacterial taxonomic structure and functional composition were revealed by next-generation sequencing (NGS) 16S sequencing. The BALB/c mice in TN group demonstrated CD-like symptoms and the damages in the intestinal tract. The NGS 16S results exhibited that the diversity and microbial composition under CD condition are significantly different with those in ET group. The KEGG Orthology (KO) profile were generated from PICRUSt, and function modules such as methanogenesis (M00347) and microcin C transport system (M00349) were found enriched in the individuals in the TN group. This study proved that mouse model induced by TNBS could develop the similar symptom to CD patient, and we firstly showed the significant intestinal microbe changes on both taxonomic structure and functional composition in this mouse model.

Keywords

Inflammatory bowel disease Crohn’s disease TNBS-induced Fecal microbiome Mouse model 

Notes

Acknowledgments

The study was supported by grants from National Nature Science Foundation of China (81470795), the Shenzhen Municipal Government of China (JSGG20140702161403250), the Shenzhen Engineering Laboratory of Detection and Intervention of human intestinal microbiome (DRC-SZ[2015]162), the Shenzhen Key Laboratory of Human commensal microorganisms and Health Research (CXB201108250098A), and the Shenzhen Municipal Government of China (the research and development of the novel personalized gut microbiota probiotic production, CXZZ20150330171521403).

Compliance with ethical standards

Animal experiments were performed in accordance with the guidelines of The Institutional Review Board on Bioethics and Biosafety of BGI (Number 13038).

Conflict of interest

The authors declare that they have no conflicts of interests.

References

  1. Alex P, Zachos NC, Nguyen T, Gonzales L, Chen TE, Conklin LS, Centola M, Li X (2009) Distinct cytokine patterns identified from multiplex profiles of murine DSS and TNBS-induced colitis. Inflamm Bowel Dis 15:341–352CrossRefPubMedPubMedCentralGoogle Scholar
  2. Best WR, Becktel JM, Singleton JW, Kern Jr F (1976) Development of a Crohn’s disease activity index. National Cooperative Crohn’s disease Study. Gastroenterology 70:439–444PubMedGoogle Scholar
  3. Cooper HS, Murthy SN, Shah RS, Sedergran DJ (1993) Clinicopathologic study of dextran sulfate sodium experimental murine colitis. Lab Investig 69:238–249PubMedGoogle Scholar
  4. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72:5069–5072CrossRefPubMedPubMedCentralGoogle Scholar
  5. Dicksved J, Halfvarson J, Rosenquist M, Järnerot G, Tysk C, Apajalahti J, Engstrand L, Jansson JK (2008) Molecular analysis of the gut microbiota of identical twins with Crohn’s disease. ISME J 2:716–727CrossRefPubMedGoogle Scholar
  6. Donia MS, Fischbach MA (2015) HUMAN MICROBIOTA. Small molecules from the human microbiota. Science 349:1254766CrossRefPubMedPubMedCentralGoogle Scholar
  7. Ikeda M, Takeshima F, Isomoto H, Shikuwa S, Mizuta Y, Ozono Y, Kohno S (2008) Simvastatin attenuates trinitrobenzene sulfonic acid–induced colitis, but not oxazalone–induced colitis. Dig Dis Sci 53:1869–1875CrossRefPubMedGoogle Scholar
  8. Joossens M, Huys G, Cnockaert M, De Preter V, Verbeke K, Rutgeerts P, Vandamme P, Vermeire S (2011) Dysbiosis of the faecal microbiota in patients with Crohn’s disease and their unaffected relatives. Gut 60:631–637CrossRefPubMedGoogle Scholar
  9. Kaakoush NO, Castaño-Rodríguez N, Day AS, Lemberg DA, Leach ST, Mitchell HM (2014) Campylobacter concisus and exotoxin 9 levels in paediatric patients with Crohn’s disease and their association with the intestinal microbiota. J Med Microbiol 63:99–105CrossRefPubMedGoogle Scholar
  10. Kaser A, Zeissig S, Blumberg S (2010) Inflammatory bowel disease. Annu Rev Immunol 28:573–621CrossRefPubMedPubMedCentralGoogle Scholar
  11. Kulikovsky A, Serebryakova M, Bantysh O, Metlitskaya A, Borukhov S, Severinov K, Dubiley S (2014) The molecular mechanism of aminopropylation of peptide-nucleotide antibiotic microcin C. J Am Chem Soc 136:11168–11175CrossRefPubMedGoogle Scholar
  12. Langille MG, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, Clemente JC, Burkepile DE, Vega Thurber RL, Knight R, Beiko RG, Huttenhower C (2013a) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31:814–821CrossRefPubMedPubMedCentralGoogle Scholar
  13. Langille MG, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, Clemente JC, Burkepile DE, Vega Thurber RL, Knight R, Beiko RG, Huttenhower C (2013b) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31:814–821CrossRefPubMedPubMedCentralGoogle Scholar
  14. Larsen N, Vogensen FK, van den Berg FW, Nielsen DS, Andreasen AS, Pedersen BK, Al-Soud WA, Sørensen SJ, Hansen LH, Jakobsen M (2010) Gut microbiota in human adults with type 2 diabetes differs from non–diabetic adults. PLoS One 5:e9085CrossRefPubMedPubMedCentralGoogle Scholar
  15. Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, Almeida M, Arumugam M, Batto JM, Kennedy S, Leonard P, Li J, Burgdorf K, Grarup N, Jørgensen T, Brandslund I, Nielsen HB, Juncker AS, Bertalan M, Levenez F, Pons N, Rasmussen S, Sunagawa S, Tap J, Tims S, Zoetendal EG, Brunak S, Clément K, Doré J, Kleerebezem M, Kristiansen K, Renault P, Sicheritz-Ponten T, de Vos WM, Zucker JD, Raes J, Hansen T, MetaHIT consortium, Bork P, Wang J, Ehrlich SD, Pedersen O (2013) Richness of human gut microbiome correlates with metabolic markers. Nature 500:541–546CrossRefPubMedGoogle Scholar
  16. Ley RE, Bäckhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI (2005) Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A 102:11070–11075CrossRefPubMedPubMedCentralGoogle Scholar
  17. Loeuillard E, Bertrand J, Herranen A, Melchior C, Guérin C, Coëffier M, Aziz M, Déchelotte P, Savoye G, Marion-Letellier R (2014) 2,4,6-Trinitrobenzene sulfonic acid-induced chronic colitis with fibrosis and modulation of TGF-β1 signaling. World J Gastroenterol 20:18207–18215CrossRefPubMedPubMedCentralGoogle Scholar
  18. Maloy KJ, Powrie F (2011) Intestinal homeostasis and its breakdown in inflammatory bowel disease. Nature 474:298–306CrossRefPubMedGoogle Scholar
  19. Manichanh C, Rigottier-Gois L, Bonnaud E, Gloux K, Pelletier E, Frangeul L, Nalin R, Jarrin C, Chardon P, Marteau P, Roca J, Dore J (2006) Reduced diversity of faecal microbiota in Crohn’s disease revealed by a metagenomic approach. Gut 55:205–211CrossRefPubMedPubMedCentralGoogle Scholar
  20. Mathur R, Amichai M, Chua KS, Mirocha J, Barlow GM, Pimentel M (2013) Methane and hydrogen positivity on breath test is associated with greater body mass index and body fat. J Clin Endocrinol Metab 98:E698–E702CrossRefPubMedPubMedCentralGoogle Scholar
  21. Morris GP, Beck PL, Herridge MS, Depew WT, Szewczuk MR, Wallace JL (1989) Hapten-induced model of chronic inflammation and ulceration in the rat colon. Gastroenterology 96:795–803PubMedGoogle Scholar
  22. Neurath MF, Fuss I, Kelsall BL, Stüber E, Strober W (1995) Antibodies to interleukin 12 abrogate established experimental colitis in mice. J Exp Med 182:1281–1290CrossRefPubMedGoogle Scholar
  23. Oliveira AP, Patil KR, Nielsen J (2008) Architecture of transcriptional regulatory circuits is knitted over the topology of bio-molecular interaction networks. BMC Syst Biol 2:17CrossRefPubMedPubMedCentralGoogle Scholar
  24. Pizarro TT, Arseneau KO, Bamias G, Cominelli F (2003) Mouse models for the study of Crohn’s disease. Trends Mol Med 9:218–222CrossRefPubMedGoogle Scholar
  25. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, Mende DR, Li J, Xu J, Li S, Li D, Cao J, Wang B, Liang H, Zheng H, Xie Y, Tap J, Lepage P, Bertalan M, Batto JM, Hansen T, Le Paslier D, Linneberg A, Nielsen HB, Pelletier E, Renault P, Sicheritz-Ponten T, Turner K, Zhu H, Yu C, Li S, Jian M, Zhou Y, Li Y, Zhang X, Li S, Qin N, Yang H, Wang J, Brunak S, Doré J, Guarner F, Kristiansen K, Pedersen O, Parkhill J, Weissenbach J, MetaHIT Consortium, Bork P, Ehrlich SD, Wang J (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65CrossRefPubMedPubMedCentralGoogle Scholar
  26. Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, Liang S, Zhang W, Guan Y, Shen D, Peng Y, Zhang D, Jie Z, Wu W, Qin Y, Xue W, Li J, Han L, Lu D, Wu P, Dai Y, Sun X, Li Z, Tang A, Zhong S, Li X, Chen W, Xu R, Wang M, Feng Q, Gong M, Yu J, Zhang Y, Zhang M, Hansen T, Sanchez G, Raes J, Falony G, Okuda S, Almeida M, LeChatelier E, Renault P, Pons N, Batto JM, Zhang Z, Chen H, Yang R, Zheng W, Li S, Yang H, Wang J, Ehrlich SD, Nielsen R, Pedersen O, Kristiansen K, Wang J (2012) A metagenome–wide association study of gut microbiota in type 2 diabetes. Nature 490:55–60CrossRefPubMedGoogle Scholar
  27. Randhawa PK, Singh K, Singh N, Jaggi AS (2014) A review on chemical-induced inflammatory bowel disease models in rodents. Korean J Physiol Pharmacol 18:279–288CrossRefPubMedPubMedCentralGoogle Scholar
  28. Rath HC, Herfarth HH, Ikeda JS, Grenther WB, Hamm Jr TE, Balish E, Taurog JD, Hammer RE, Wilson KH, Sartor RB (1996) Normal luminal bacteria, especially Bacteroides species, mediate chronic colitis, gastritis, and arthritis in HLA-B27/human beta2 microglobulin transgenic rats. J Clin Invest 98:945–953CrossRefPubMedPubMedCentralGoogle Scholar
  29. Salonen A, Nikkilä J, Jalanka-Tuovinen J, Immonen O, Rajilić-Stojanović M, Kekkonen RA, Palva A, de Vos WM (2010) Comparative analysis of fecal DNA extraction methods with phylogenetic microarray: effective recovery of bacterial and archaeal DNA using mechanical cell analysis. J Microbiol Methods 81:127–134CrossRefPubMedGoogle Scholar
  30. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open–source, platform–independent, community–supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541CrossRefPubMedPubMedCentralGoogle Scholar
  31. Schmalenberger AL, Schwieger F, Tebbe CC (2001) Effect of primers hybridizing to different evolutionarily conserved regions of the small-subunit rRNA gene in PCR-based microbial community analyses and genetic profiling. Appl Environ Microbiol 67:3557–3563CrossRefPubMedPubMedCentralGoogle Scholar
  32. Shannon E (1948) A mathematical theory of communication. Bell System Technical Journal 27:379–423 and 623–656CrossRefGoogle Scholar
  33. da Silva MS, Sánchez-Fidalgo S, Talero E, Cárdeno A, da Silva MA, Villegas W, Souza Brito AR, de La Lastra CA (2010) Antiinflammatory intestinal activity of Abarema cochliacarpos (Gomes) Barneby & Grimes in TNBS colitis model. J Ethnopharmacol 128:467–475CrossRefPubMedGoogle Scholar
  34. Sokol H, Pigneur B, Watterlot L (2008) Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci U S A 105:16731–16736CrossRefPubMedPubMedCentralGoogle Scholar
  35. Stidham RW, Xu J, Johnson LA, Kim K, Moons DS, McKenna BJ, Rubin JM, Higgins PD (2011) Ultrasound elasticity imaging for detecting intestinal fibrosis and inflammation in rats and humans with Crohn’s disease. Gastroenterology 141:819–826CrossRefPubMedGoogle Scholar
  36. Strober W, Fuss I, Mannon P (2007) The fundamental basis of inflammatory bowel disease. J Clin Invest 117:514–521CrossRefPubMedPubMedCentralGoogle Scholar
  37. Tamboli CP, Neut C, Desreumaux P, Colombel JF (2004) Dysbiosis as a prerequisite for IBD. Gut 53:1057CrossRefPubMedPubMedCentralGoogle Scholar
  38. Te Velde AA, Verstege MI, Hommes DW (2006) Critical appraisal of the current practice in murine TNBS-induced colitis. Inflamm Bowel Dis 12:995–999CrossRefGoogle Scholar
  39. Willing B, Halfvarson J, Dicksved J, Rosenquist M, Järnerot G, Engstrand L, Tysk C, Jansson JK (2009) Twin studies reveal specific imbalances in the mucosa–associated microbiota of patients with ileal Crohn’s disease. Inflamm Bowel Dis 15:653–660CrossRefPubMedGoogle Scholar
  40. Zackular JP, Rogers MAM, Ruffin IV MT, Schloss PD (2014) The human gut microbiome as a screening tool for colorectal cancer. Cancer Prev Res (Phila) 7:1112–1121CrossRefGoogle Scholar
  41. Zhu Y, Lin X, Zhao F, Shi X, Li H, Li Y, Zhu W, Xu X, Lu C, Zhou G (2015) Meat, dairy and plant proteins alter bacterial composition of rat gut bacteria. Sci Rep 5:15220CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Qing He
    • 1
  • Xiaoping Li
    • 3
  • Chuan Liu
    • 3
    • 4
  • Lili Su
    • 3
    • 4
  • Zhongkui Xia
    • 3
    • 4
  • Xin Li
    • 3
  • Ying Li
    • 1
  • Lingling Li
    • 2
  • Ting Yan
    • 2
  • Qiang Feng
    • 3
    • 5
  • Liang Xiao
    • 3
    • 4
  1. 1.Department of GastroenterologyThe Sixth Affiliated Hospital of Sun Yat-sen UniversityGuangzhouChina
  2. 2.Nutrition DepartmentThe Sixth Affiliated Hospital of Sun Yat-sen UniversityGuangzhouChina
  3. 3.BGI-ShenzhenShenzhenChina
  4. 4.Shenzhen Key Laboratory of Human Commensal Microorganisms and Health ResearchShenzhenChina
  5. 5.Shenzhen Engineering Laboratory of Detection and Intervention of Human Intestinal MicrobiomeShenzhenChina

Personalised recommendations