Advertisement

Applied Microbiology and Biotechnology

, Volume 100, Issue 7, pp 3321–3336 | Cite as

Key high molecular weight PAH-degrading bacteria in a soil consortium enriched using a sand-in-liquid microcosm system

  • Margalida Tauler
  • Joaquim Vila
  • José María Nieto
  • Magdalena GrifollEmail author
Environmental biotechnology

Abstract

A novel biphasic system containing mineral medium and sand coated with a biologically weathered creosote-PAH mixture was developed to specifically enrich the high molecular weight polycyclic aromatic hydrocarbon (HMW PAH)-degrading community from a creosote-polluted soil. This consortium (UBHP) removed 70 % of the total HMW PAHs and their alkyl-derivatives in 12 weeks. Based on a combined culture-dependent/independent approach, including clone library analysis, detection of catabolic genes, metabolomic profiles, and characterization of bacterial isolates, 10 phylotypes corresponding to five major genera (Sphingobium, Sphingomonas, Achromobacter, Pseudomonas, and Mycobacterium) were pointed out as key players within the community. In response to exposure to different single PAHs, members of sphingomonads were associated to the utilization of phenanthrene, fluoranthene, benzo[a]anthracene, and chrysene, while the degradation of pyrene was mainly associated to low-abundance mycobacteria. In addition to them, a number of uncultured phylotypes were detected, being of special relevance a group of Gammaproteobacteria closely related to a group previously associated with pyrene degradation that were here related to benzo(a)anthracene degradation. The overall environmental relevance of these phylotypes was confirmed by pyrosequencing analysis of the microbial community shift in the creosote-polluted soil during a lab-scale biostimulation.

Keywords

PAHs Biodegradation Microbial community analysis Microbial consortium Polluted soil 

Notes

Acknowledgments

During the writing of this manuscript, our funding included two grants (CGL2010-22068-C02-02, CGL2013-44554-R) and a fellowship (to M.T., BES-2011-045106) from the Spanish Ministry of Economy and Competitiveness. The authors are members of the Xarxa de Referencia d’R+D+I en Biotecnologia (XRB) of the Generalitat de Catalunya. We are grateful to Asunción Marín (Scientific and Technological Centers of the University of Barcelona) for the acquisition of GC-MS data.

Compliance with ethical standards

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Funding

This study was funded by the Spanish Ministry of Economy and Competitiveness (grant numbers CGL2010-22,068-C02-02 and CGL2013-44,554-R; and fellowship to M.T. number BES-2011-045,106).

Conflict of interest

Margalida Tauler declares that she has no conflict of interest. Joaquim Vila declares that he has no conflict of interest. José Maria Nieto declares that he has no conflict of interest. Magdalena Grifoll declares that she has no conflict of interest.

Supplementary material

253_2015_7195_MOESM1_ESM.pdf (387 kb)
ESM 1 (PDF 386 kb)

References

  1. Bouchez M, Blanchet D, Haeseler F (2000) Efficiency of defined strains and of soil consortia in the biodegradation of polycyclic aromatic hydrocarbon (PAH) mixtures. Biodegradation 10:429–435CrossRefGoogle Scholar
  2. Buckley DH, Graber JR, Schmidt TM (1998) Phylogenetic analysis of nonthermophilic members of the kingdom Crenarchaeota and their diversity and abundance in soils. Appl Environ Microbiol 64:4333–4339PubMedPubMedCentralGoogle Scholar
  3. Caldini G, Cenci G, Manenti R, Morozzi G (1995) The ability of an environmental isolate of Pseudomonas fluorescens to utilize chrysene and other four-ring polynuclear aromatic hydrocarbons. Appl Microbiol Biotechnol 44:225–229CrossRefGoogle Scholar
  4. Cébron A, Norini M-P, Beguiristain T, Leyval C (2008) Real-time PCR quantification of PAH-ring hydroxylating dioxygenase (PAH-RHD alpha) genes from Gram positive and Gram negative bacteria in soil and sediment samples. J Microbiol Methods 73:148–159CrossRefPubMedGoogle Scholar
  5. Dastgheib SMM, Amoozegar MA, Khajeh K, Shavandi M, Ventosa A (2012) Biodegradation of polycyclic aromatic hydrocarbons by a halophilic microbial consortium. Appl Microbiol Biotechnol 95:789–798CrossRefPubMedGoogle Scholar
  6. DeBruyn JM, Mead TJ, Sayler GS (2012) Horizontal transfer of PAH catabolism genes in Mycobacterium: evidence from comparative genomics and isolated pyrene-degrading bacteria. Environ Sci Technol 46:99–106CrossRefPubMedGoogle Scholar
  7. Edwards SJ, Kjellerup BV (2013) Applications of biofilms in bioremediation and biotransformation of persistent organic pollutants, pharmaceuticals/personal care products, and heavy metals. Appl Microbiol Biotechnol 97:9909–9921CrossRefPubMedGoogle Scholar
  8. El Fantroussi S, Verschuere L, Verstraete W, Top EM (1999) Effect of phenylurea herbicides on soil microbial communities estimated by analysis of 16S rRNA gene fingerprints and community-level physiological profiles. Appl Environ Microbiol 65:982–988PubMedPubMedCentralGoogle Scholar
  9. Ferrero M, Llobet-Brossa E, Lalucat J, García-Valdés E, Rosselló-Móra R, Bosch R (2002) Coexistence of two distinct copies of naphthalene degradation genes in Pseudomonas strains isolated from the western Mediterranean region. Appl Environ Microbiol 68:957–962CrossRefPubMedPubMedCentralGoogle Scholar
  10. Gallego S, Vila J, Tauler M, Nieto JM, Breugelmans P, Springael D, Grifoll M (2014) Community structure and PAH ring-hydroxylating dioxygenase genes of a marine pyrene-degrading microbial consortium. Biodegradation 25:543–556CrossRefPubMedGoogle Scholar
  11. Gillespie IMM, Philp JC (2013) Bioremediation, an environmental remediation technology for the bioeconomy. Trends Biotechnol 31:329–332CrossRefPubMedGoogle Scholar
  12. Grifoll M, Selifonov S, Gatlin CV, Chapman PJ (1995) Actions of a versatile fluorene-degrading bacterial isolate on polycyclic aromatic compounds. Appl Environ Microbiol 61:3711–3723PubMedPubMedCentralGoogle Scholar
  13. Hamaki T, Suzuki M, Fudou R, Jojima Y, Kajiura T, Tabuchi A, Sen K, Shibai H (2005) Isolation of novel bacteria and actinomycetes using soil-extract agar medium. J Biosci Bioeng 99:485–492CrossRefPubMedGoogle Scholar
  14. Heuer H, Krsek M, Baker P, Smalla K, Wellington EM (1997) Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl Environ Microbiol 63:3233–3241PubMedPubMedCentralGoogle Scholar
  15. Iwai S, Johnson T, Chai B, Hashsham S, Tiedje JM (2011) Comparison of the specificities and efficacies of primers for aromatic dioxygenase gene analysis of environmental samples. Appl Environ Microbiol 77:3551–3557CrossRefPubMedPubMedCentralGoogle Scholar
  16. Jones M, Rodgers-Vieira E, Hu J, Aitken MD (2014) Association of growth substrates and bacterial genera with benzo[a]pyrene mineralization in contaminated soil. Environ Eng Sci 31:689–697CrossRefPubMedPubMedCentralGoogle Scholar
  17. Jones MD, Crandell DW, Singleton DR, Aitken MD (2011) Stable-isotope probing of the polycyclic aromatic hydrocarbon-degrading bacterial guild in a contaminated soil. Environ Microbiol 13:2623–2632CrossRefPubMedPubMedCentralGoogle Scholar
  18. Juhasz AL, Naidu R (2000) Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo[a]pyrene. Int Biodeterior Biodegradation 45:57–88CrossRefGoogle Scholar
  19. Kanaly RA, Harayama S (2010) Advances in the field of high-molecular-weight polycyclic aromatic hydrocarbon biodegradation by bacteria. Microb Biotechnol 3:136–164CrossRefPubMedPubMedCentralGoogle Scholar
  20. Kanaly RA, Bartha R, Watanabe K, Harayama S (2000) Rapid mineralization of benzo[a]pyrene by a microbial consortium growing on diesel fuel. Appl Environ Microbiol 66:4205–4211CrossRefPubMedPubMedCentralGoogle Scholar
  21. Khara P, Roy M, Chakraborty J, Ghosal D, Dutta TK (2014) Functional characterization of diverse ring-hydroxylating oxygenases and induction of complex aromatic catabolic gene clusters in Sphingobium sp. PNB. FEBS Open Bio 4:290–300CrossRefPubMedPubMedCentralGoogle Scholar
  22. Kohlmeier S, Smits THM, Ford RM, Keel C, Harms H, Wick LY (2005) Taking the fungal highway: mobilization of pollutant-degrading bacteria by fungi. Environ Sci Technol 39:4640–4646CrossRefPubMedGoogle Scholar
  23. Kostka JE, Prakash O, Overholt W, Green SJ, Freyer G, Canion A, Delgardio J, Norton N, Hazen TC, Huettel M (2011) Hydrocarbon-degrading bacteria and the bacterial community response in Gulf of Mexico beach sands impacted by the deepwater horizon oil spill. Appl Environ Microbiol 77:7962–7974CrossRefPubMedPubMedCentralGoogle Scholar
  24. Kunihiro M, Ozeki Y, Nogi Y, Hamamura N, Kanaly RA (2013) Benz[a]anthracene biotransformation and production of ring fission products by Sphingobium sp. strain KK22. Appl Environ Microbiol 79:4410–4420CrossRefPubMedPubMedCentralGoogle Scholar
  25. Kweon O, Kim S-J, Freeman JP, Song J, Baek S, Cerniglia CE (2010) Substrate specificity and structural characteristics of the novel Rieske nonheme iron aromatic ring-hydroxylating oxygenases NidAB and NidA3B3 from Mycobacterium vanbaalenii PYR-1. MBio 1(2):e00135–e00110CrossRefPubMedPubMedCentralGoogle Scholar
  26. Kweon O, Kim S-J, Kim DW, Kim JM, Kim H-L, Ahn Y, Sutherland JB, Cerniglia CE (2014) Pleiotropic and epistatic behavior of a ring-hydroxylating oxygenase system in the polycyclic aromatic hydrocarbon metabolic network from Mycobacterium vanbaalenii PYR-1. J Bacteriol 196:3503–3515CrossRefPubMedPubMedCentralGoogle Scholar
  27. Lafortune I, Juteau P, Déziel E, Lépine F, Beaudet R, Villemur R (2009) Bacterial diversity of a consortium degrading high-molecular-weight polycyclic aromatic hydrocarbons in a two-liquid phase biosystem. Microb Ecol 57:455–468CrossRefPubMedGoogle Scholar
  28. Leys NM, Bastiaens L, Verstraete W, Springael D (2005a) Influence of the carbon/nitrogen/phosphorus ratio on polycyclic aromatic hydrocarbon degradation by Mycobacterium and Sphingomonas in soil. Appl Microbiol Biotechnol 66:726–736CrossRefPubMedGoogle Scholar
  29. Leys NM, Ryngaert A, Bastiaens L, Wattiau P, Top EM, Verstraete W, Springael D (2005b) Occurrence and community composition of fast-growing Mycobacterium in soils contaminated with polycyclic aromatic hydrocarbons. FEMS Microbiol Ecol 51:375–388CrossRefPubMedGoogle Scholar
  30. Leys NMEJ, Ryngaert A, Bastiaens L, Verstraete W, Top EM, Springael D (2004) Occurrence and phylogenetic diversity of Sphingomonas strains in soils contaminated with polycyclic aromatic hydrocarbons. Appl Environ Microbiol 70:1944–1955CrossRefPubMedPubMedCentralGoogle Scholar
  31. van Liedekerke M, Prokop G, Rabl-berger S, Kibblewhite M (2014) Progress in the management of contaminated sites in Europe. In: JRC Reference Reports Report EUR 26376 ENGoogle Scholar
  32. Lladó S, Gràcia E, Solanas AM, Viñas M (2013) Fungal and bacterial microbial community assessment during bioremediation assays in an aged creosote-polluted soil. Soil Biol Biochem 67:114–123CrossRefGoogle Scholar
  33. López Z, Vila J, Grifoll M (2005) Metabolism of fluoranthene by mycobacterial strains isolated by their ability to grow in fluoranthene or pyrene. J Ind Microbiol Biotechnol 32:455–464CrossRefPubMedGoogle Scholar
  34. López Z, Vila J, Minguillón C, Grifoll M (2006) Metabolism of fluoranthene by Mycobacterium sp. strain AP1. Appl Microbiol Biotechnol 70:747–756CrossRefPubMedGoogle Scholar
  35. López Z, Vila J, Ortega-Calvo JJ, Grifoll M (2008) Simultaneous biodegradation of creosote-polycyclic aromatic hydrocarbons by a pyrene-degrading Mycobacterium. Appl Microbiol Biotechnol 78:739–739CrossRefGoogle Scholar
  36. Martin F, Torelli S, Le Paslier D, Barbance A, Martin-Laurent F, Bru D, Geremia R, Blake G, Jouanneau Y (2012) Betaproteobacteria dominance and diversity shifts in the bacterial community of a PAH-contaminated soil exposed to phenanthrene. Environ Pollut 162:345–353CrossRefPubMedGoogle Scholar
  37. Moody JD, Freeman JP, Fu PP, Cerniglia CE (2004) Degradation of benzo[a]pyrene by Mycobacterium vanbaalenii PYR-1. Appl Environ Microbiol 70:340–345CrossRefPubMedPubMedCentralGoogle Scholar
  38. Mueller JG, Chapman PJ, Blattmann BO, Pritchard PH (1990) Isolation and characterization of a fluoranthene-utilizing strain of Pseudomonas paucimobilis. Appl Environ Microbiol 56:1079–1086PubMedPubMedCentralGoogle Scholar
  39. Ortega-Calvo JJ, Birman I, Alexander M (1995) Effect of varying the rate of partitioning of phenanthrene in nonaqueous-phase liquids on biodegradation in soil slurries. Environ Sci Technol 29:2222–2225CrossRefPubMedGoogle Scholar
  40. Peng R-H, Xiong A-S, Xue Y, Fu X-Y, Gao F, Zhao W, Tian Y-S, Yao Q-H (2008) Microbial biodegradation of polyaromatic hydrocarbons. FEMS Microbiol Rev 32:927–955CrossRefPubMedGoogle Scholar
  41. Prince RC, Elmendorf DL, Lute JR, Hsu CS, Halth CE, Senius JD, Dechert GJ, Douglas GS, Butler EL (1994) 17α(H),21β(H)-hopane as a conserved internal marker for estimating the biodegradation of crude oil. Environ Sci Technol 28:142–145CrossRefPubMedGoogle Scholar
  42. Roy M, Khara P, Dutta TK (2012) Meta-cleavage of hydroxynaphthoic acids in the degradation of phenanthrene by Sphingobium sp. strain PNB. Microbiology 158:685–695CrossRefPubMedGoogle Scholar
  43. Schuler L, Jouanneau Y, Chadhain SMN, Meyer C, Pouli M, Zylstra GJ, Hols P, Agathos SN (2009) Characterization of a ring-hydroxylating dioxygenase from phenanthrene-degrading Sphingomonas sp. strain LH128 able to oxidize benz[a]anthracene. Appl Microbiol Biotechnol 83:465–475CrossRefPubMedGoogle Scholar
  44. Singleton DR, Sangaiah R, Gold A, Ball LM, Aitken MD (2006) Identification and quantification of uncultivated Proteobacteria associated with pyrene degradation in a bioreactor treating PAH-contaminated soil. Environ Microbiol 8:1736–1745CrossRefPubMedGoogle Scholar
  45. Sohn JH, Kwon KK, Kang J-H, Jung H-B, Kim S-J (2004) Novosphingobium pentaromativorans sp. nov., a high-molecular-mass polycyclic aromatic hydrocarbon-degrading bacterium isolated from estuarine sediment. Int J Syst Evol Microbiol 54:1483–1487CrossRefPubMedGoogle Scholar
  46. Stolz A (2009) Molecular characteristics of xenobiotic-degrading sphingomonads. Appl Microbiol Biotechnol 81:793–811CrossRefPubMedGoogle Scholar
  47. Sun R, Jin J, Sun G, Liu Y, Liu Z (2010) Screening and degrading characteristics and community structure of a high molecular weight polycyclic aromatic hydrocarbon-degrading bacterial consortium from contaminated soil. J Environ Sci 22:1576–1585CrossRefGoogle Scholar
  48. Vanbroekhoven K, Ryngaert A, Bastiaens L, Wattiau P, Vancanneyt M, Swings J, De Mot R, Springael D (2004) Streptomycin as a selective agent to facilitate recovery and isolation of introduced and indigenous Sphingomonas from environmental samples. Environ Microbiol 6:1123–1136CrossRefPubMedGoogle Scholar
  49. Vila J, Grifoll M (2009) Actions of Mycobacterium sp. strain AP1 on the saturated- and aromatic-hydrocarbon fractions of fuel oil in a marine medium. Appl Environ Microbiol 75:6232–6239CrossRefPubMedPubMedCentralGoogle Scholar
  50. Vila J, López Z, Sabaté J, Minguillón C, Solanas AM, Grifoll M (2001) Identification of a novel metabolite in the degradation of pyrene by Mycobacterium sp. strain AP1: actions of the isolate on two- and three-ring polycyclic aromatic hydrocarbons. Appl Environ Microbiol 67:5497–5505CrossRefPubMedPubMedCentralGoogle Scholar
  51. Vila J, Tauler M, Grifoll M (2015) Bacterial PAH degradation in marine and terrestrial habitats. Curr Opin Biotechnol 33:95–102CrossRefPubMedGoogle Scholar
  52. Viñas M, Sabaté J, Espuny MJ, Solanas AM (2005) Bacterial community dynamics and polycyclic aromatic hydrocarbon degradation during bioremediation of heavily creosote-contaminated soil. Appl Environ Microbiol 71:7008–7018CrossRefPubMedPubMedCentralGoogle Scholar
  53. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267CrossRefPubMedPubMedCentralGoogle Scholar
  54. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703PubMedPubMedCentralGoogle Scholar
  55. Weissenfels WD, Beyer M, Klein J (1990) Degradation of phenanthrene, fluorene and fluoranthene by pure bacterial cultures. Appl Microbiol Biotechnol 32:479–484CrossRefPubMedGoogle Scholar
  56. Wrenn BA, Venosa AD (1996) Selective enumeration of aromatic and aliphatic hydrocarbon degrading bacteria by a most-probable-number procedure. Can J Microbiol 42:252–258CrossRefPubMedGoogle Scholar
  57. Wright ES, Yilmaz LS, Noguera DR (2012) DECIPHER, a search-based approach to chimera identification for 16S rRNA sequences. Appl Environ Microbiol 78:717–725CrossRefPubMedPubMedCentralGoogle Scholar
  58. Yabuuchi E, Kawamura Y, Kosako Y, Ezaki T (1998) Emendation of genus Achromobacter and Achromobacter xylosoxidans (Yabuuchi and Yano) and proposal of Achromobacter ruhlandii (Packer and Vishniac) comb. nov., Achromobacter piechaudii (Kiredjian et al.) comb. nov., and Achromobacter xylosoxidans subsp. denitrificans (Rüger and Tan) comb. nov. Microbiol Immunol 42:429–438CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Margalida Tauler
    • 1
  • Joaquim Vila
    • 1
  • José María Nieto
    • 1
  • Magdalena Grifoll
    • 1
    Email author
  1. 1.Department of Microbiology, Faculty of BiologyUniversity of BarcelonaBarcelonaSpain

Personalised recommendations