Applied Microbiology and Biotechnology

, Volume 100, Issue 3, pp 1089–1099 | Cite as

Unorthodox methods for enhancing solvent production in solventogenic Clostridium species

  • Victor Ujor
  • Christopher Okonkwo
  • Thaddeus Chukwuemeka EzejiEmail author


While production of biofuels from renewable resources is currently receiving increased attention globally, concerns on availability and sustainability of cheap substrates for their production are growing as well. Lignocellulose-derived sugars (LDS) remain underutilized and merit consideration as a key feedstock. Among other obstacles such as low yield and low solvent titer, mitigation of stresses stemming from lignocellulose-derived microbial inhibitory compounds (LDMICs) that severely impair cell growth and solvent production is a major area of research interest. In addition to attempts at developing LDMIC-tolerant strains via metabolic engineering to enhance utilization of LDS, unconventional approaches that elicit different metabolic perturbations in microorganisms to relieve solvent- and LDMIC-mediated stresses have been explored to increase solvent production from LDS. In this review, the impacts of metabolic perturbations including medium supplementation with glycerol; furfural and 5-hydroxymethyl furfural; allopurinol, an inhibitor of xanthine dehydrogenase; calcium (Ca2+) and zinc (Zn2+) ions); and artificial electron carriers, methyl viologen and neutral red, on butanol production are discussed. Although these approaches have brought about considerable increases in butanol production, both from LDS and defined glucose-based media, the modes of action for most of these perturbations have yet to be fully characterized. Better understanding of these mechanisms would likely inform development of LDMIC-tolerant, butanol-overproducing strains, as well as possible combinatorial application of these approaches for enhanced butanol production. Hence, delineating the underlying mechanisms of these perturbations deserves further attention.


Lignocellulose Butanol Glycerol Allopurinol Calcium carbonate 



Salaries and research support were provided in part by State funds appropriated to the Ohio State University, Ohio Agricultural Research and Development Center (OARDC), and the Hatch grant (project no. OHO01333). This research was also supported in part by grants to T.C.E. from the US Department of Transportation (grant DTOS59-07-G-00052) and the Northeast Sun Grant Initiative award/agreement no. 52110-9615.

Compliance with ethical standards

Conflict of interest

The authors declare no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. Almeida JRM, Röder A, Modig T, Laadan B, Lidén G, Gorwa-Grauslund MF (2008) NADH- vs NADPH-coupled reduction of 5-hydroxymethyl furfural (HMF) and its implications on product distribution in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 78:939–945PubMedCrossRefGoogle Scholar
  2. Ask M, Bettiga M, Mapelli V, Olsson L (2013) The influence of HMF and furfural on the redox-balance and energy-state of xylose and energy-state of xylose-utilizing Saccharomyces cerevisiae. Biotechnol Biofuels 6:22–34PubMedPubMedCentralCrossRefGoogle Scholar
  3. Bahl H, Gottwald M, Kuhn A, Rale V, Andersch W, Gottschalk G (1986) Nutritional factors affecting the ratio of solvents produced by Clostridium acetobutylicum. Appl Environ Microbiol 52:169–172PubMedPubMedCentralGoogle Scholar
  4. Cheng CL, Che PY, Chen BY, Lee WJ, Lin CY, Chang JS (2012) Biobutanol production from agricultural waste by an acclimated mixed bacterial microflora. Appl Energy 100:3–9CrossRefGoogle Scholar
  5. Christiansen LC, Schou S, Nygaard P, Saxlid HH (1997) Xanthine metabolism in Bacillus subtilis: characterization of the xpt-pbutX operon and evidence of purine- and nitrogen-controlled expression of genes involved in xanthine salvage catabolism. J Bacteriol 179:2540–2550PubMedPubMedCentralGoogle Scholar
  6. Demuez M, Cournac L, Guerrini O, Soucaille P, Girbal L (2007) Complete activity profile of Clostridium acetobutylicum [FeFe]-hydrogenase and kinetic parameters for endogenous redox partners. FEMS Microbiol Lett 275:113–121Google Scholar
  7. Du Y, Jiang W, Yu M, Tang I-C, Yangl S-T (2015) Metabolic engineering of Clostridium tyrobutylicumackadhE2 for enhanced n-butanol production from glucose: effects of methyl viologen on NADH availability, flux distribution, and fermentation kinetics. Biotechnol Bioeng 112:795–715Google Scholar
  8. El Kanouni A, Zerdani I, Zaafa SM, Znassni M, Loufti M, Boudouma M (1998) The improvement of glucose/xylose fermentation by Clostridium acetobutylicum using calcium carbonate. World J Microbiol Biotechnol 14:431–435CrossRefGoogle Scholar
  9. Ezeji TC, Milne C, Price ND, Blaschek HP (2010) Achievements and perspectives to overcome the poor solvent resistance in acetone and butanol producing microorganisms. Appl Microbiol Biotechnol 85:1697–1712PubMedCrossRefGoogle Scholar
  10. Ezeji TC, Qureshi N, Blaschek HP (2007a) Bioproduction of butanol from biomass: from genes to bioreactors. Curr Opin Biotechnol 18:220–227PubMedCrossRefGoogle Scholar
  11. Ezeji TC, Qureshi N, Blaschek HP (2007b) Butanol production from agricultural residues: impact of degradation products on Clostridium beijerinckii growth and butanol fermentation. Biotechnol Bioeng 97:1460–1469PubMedCrossRefGoogle Scholar
  12. Girbal L, Croux C, Vasconcelos I, Soucaille P (1995) Regulation of metabolic shifts in Clostridium acetobutylicum ATCC 824. FEMS Microbiol Rev 17:287–297CrossRefGoogle Scholar
  13. Girbal L, Soucaille P (1994) Regulation of Clostridium acetobutylicum metabolism as revealed by mixed-substrate steady-state continuous cultures: role of NADH/NAD ratio and ATP pool. J Bacteriol 176:6433–6438PubMedPubMedCentralGoogle Scholar
  14. Girbal L, Soucaille P (1998) Regulation of solvent production in Clostridium acetobutylicum. Trends Biotechnol 16:1–16CrossRefGoogle Scholar
  15. Gottumukkala LD, Sukumaran RK, Mohan SV, Valappil SK, Sarkarb O, Pandeya A (2015) Rice straw hydrolysate to fuel and volatile fatty acid conversion by Clostridium sporogenes BE01: bio-electrochemical analysis of the electron transport mediators involved. Green Chem 17:3047–3058CrossRefGoogle Scholar
  16. Grupe H, Gottschalk G (1992) Physiological events in Clostridium acetobutylicum during the shift from acidogenesis to solventogenesis in continuous culture and presentation of a model for shift induction. Appl Environ Microbiol 58:3896–3902PubMedPubMedCentralGoogle Scholar
  17. Han B, Ujor V, Lai LB, Gopalan V, Ezeji TC (2013) Use of proteomic analysis to elucidate the role of calcium in acetone-butanol-ethanol fermentation by Clostridium beijerinckii NCIMB 8052. Apple Environ Microbiol 79:282–293CrossRefGoogle Scholar
  18. Heuser F, Schroer K, Lutz S, Bringer-meyer S, Sahm H (2007) Enhancement of the NAD(P)H pool in Escherichia coli for biotransformation. Eng Life Sci 7:343–353CrossRefGoogle Scholar
  19. Hönicke D, Janssen H, Grimmler C, Ehrenreich A, Lütke-Eversloh T (2012) Global transcriptional changes of Clostridium acetobutylicum cultures with increased butanol:acetone ratios. New Biotechnol 29:485–493CrossRefGoogle Scholar
  20. Jang YS, Lee J, Malaviya A, Seung do Y, Cho JH, Lee SY (2012) Butanol production from renewable biomass: rediscovery of metabolic pathways and metabolic engineering. Biotechnol J 7:186–198PubMedCrossRefGoogle Scholar
  21. Jin C, Yao M, Liu H, Lee CF, Ji J (2011) Progress in the production and application of n-butanol as a biofuel. Renew Sust Energ Rev 15:4080–4106CrossRefGoogle Scholar
  22. Johnson DT, Taconi KA (2007) The glycerin glut: options for the value-added conversion of crude glycerol resulting from biodiesel production. Environ Prog 126:338–348CrossRefGoogle Scholar
  23. Kelley WN, Rosenbloom FM, Miller J, Seegmiller JE (1968) An enzymatic basis for variations in response to allopurinol. New Engl J Med 278:287–293PubMedCrossRefGoogle Scholar
  24. Kirschner M (2006) n-Butanol. Chem Mark Report 269:42Google Scholar
  25. Knoshaug EP, Zhang M (2009) Butanol tolerance in a selection of microorganisms. Appl Biochem Biotechnol 153:13–20PubMedCrossRefGoogle Scholar
  26. Kolberg M, Strand KR, Graff P, Anderson KK (2004) Structure, function and mechanism of ribonucleotide reductases. Biochim Biophys Acta 1699:1–34PubMedCrossRefGoogle Scholar
  27. Li T, Yan Y, He J (2014) Reducing cofactors contribute to the increase of butanol production by wild-type Clostridium sp. Strain BOH3. Bioresour Technol 155(220):228Google Scholar
  28. Li Z, Xiao H, Jiang W, Jiang Y, Yang S (2013) Improvement of solvent production from xylose mother liquor by engineering xylose metabolic pathway in Clostridium acetobutylicum EA 2018. Appl Biochem Biotechnol 171:555–568PubMedCrossRefGoogle Scholar
  29. Lin ECC (1976) Glycerol dissimilation and its regulation in bacteria. Ann Rev Microbiol 30:535–578CrossRefGoogle Scholar
  30. Lütke-Eversloh T, Bahl H (2011) Metabolic engineering of Clostridium acetobutylicum: recent advances to improve butanol production. Curr Opin Biotechnol 22:634–347PubMedCrossRefGoogle Scholar
  31. Marchal R, Blanchet D, Vandecasteele J (1985) Industrial optimization of acetone-butanol fermentation: a study of the utilization of Jerusalem artichokes. Appl Microbiol Biotechnol 23:92–98CrossRefGoogle Scholar
  32. Meyer CL, Roos JW, Papoutsakis ET (1986) Carbon monoxide gassing leads to alcohol production and butyrate uptake without acetone formation in continuous cultures of Clostridium acetobutylicum. Appl Microbiol Biotechnol 24:159–167Google Scholar
  33. Moat GA, Foster JW (1987) Biosynthesis and salvage pathways of pyridine nucleotides. In: DDO A, Poulson R (eds) Pyridine nucleotide coenzymes part A. John Wiley & Sons, Inc, New YorkGoogle Scholar
  34. Ni Y, Song L, Qian X, Sun Z (2013) Proteomic analysis of Pseudomonas putida reveals an organic solvent tolerance-related gene mmsB. PLoS One 8(2):e55858PubMedPubMedCentralCrossRefGoogle Scholar
  35. Nielsen DR, Leonard E, Yoon SH, Tseng HC, Yuan C, Prather KL (2009) Engineering alternative butanol production platforms in heterologous bacteria. Metab Eng 11:262–273PubMedCrossRefGoogle Scholar
  36. Palmqvist E, Hähn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysate. II: inhibitors and mechanisms of inhibition. Bioresour Technol 74:25–33CrossRefGoogle Scholar
  37. Peguin S, Soucaille P (1995) Modulation of carbon and electron flow in Clostridium acetobutylicum by iron limitation and methyl viologen addition. Appl Environ Microbiol 61:403–405PubMedPubMedCentralGoogle Scholar
  38. Qureshi N, Bowmana MJ, Sahaa BC, Hectora R, Berhowb MA, Cottaa MA (2012) Effect of cellulosic sugar degradation products (furfural and hydroxymethyl furfural) on acetone–butanol–ethanol (ABE) fermentation using Clostridium beijerinckii P260. Food Bioprod Bioprocess 90:533–540CrossRefGoogle Scholar
  39. Ranjan A, Moholkar VS (2012) Biobutanol: science, engineering, and economics. Int J Energ Res 36:277–323CrossRefGoogle Scholar
  40. Ren C, Gu Y, Hu S, Wu Y, Wang P, Yang Y, Yang C, Yang S, Jiang W (2010) Identification and inactivation of a leitropic regulator CcpA to eliminate glucose repression of xylose utilization in Clostridium acetobutylicum. Metab Eng 12:446–454PubMedCrossRefGoogle Scholar
  41. Richmond C, Han B, Ezeji TC (2011) Stimulatory Effects of Calcium Carbonate on Butanol Production by Solventogenic Clostridium Species 5:18–28Google Scholar
  42. Rundles RW, Wyngaarden JB, Hitchings GH, Ellion GB, Silberman HR (1963) Effects of xanthine oxidase inhibitor on thiopurine metabolism, hyperuricemia and gout. Tr Am Phys 76:126–140Google Scholar
  43. Sabra W, Groeger C, Sharma PN, Zeng A-P (2014) Improved n-butanol production by non-acetone producing Clostridium pasteurianum DSMZ 525 in mixed substrate fermentation. Appl Microbiol Biotechnol 98:4267–4276PubMedPubMedCentralCrossRefGoogle Scholar
  44. Tomas CA, Beamish J, Papousakis ET (2004) Transcriptional analysis of butanol stress tolerance in Clostridium acetobutylicum. J Bacteriol 186:2006–2018PubMedPubMedCentralCrossRefGoogle Scholar
  45. Ujor V, Agu CV, Gopalan V, Ezeji TC (2014) Glycerol supplementation enhances furfural detoxification by Clostridium beijerinckii during butanol fermentation. Appl Microbiol Biotechnol 98:6511–6521PubMedCrossRefGoogle Scholar
  46. Ujor V, Agu CV, Gopalan V, Ezeji TC (2015) Allopurinol-mediated lignocellulose-derived microbial inhibitor tolerance by Clostridium beijerinckii during acetone–butanol–ethanol (ABE) fermentation. Appl Microbiol Biotechnol 99:3729–3740PubMedCrossRefGoogle Scholar
  47. Vasconcelos I, Girbal L, Soucaille P (1994) Regulation of carbon and electron flow in Clostridium acetobutylicum grown in chemostat culture at neutral pH on mixture of glucose and glycerol. J Bacteriol 176:1443–1450PubMedPubMedCentralGoogle Scholar
  48. Visioli LJ, Enzweiler H, Kuhn RC, Schwaab M, Mazutti MA (2014) Recent advances in butanol production. Sustainable Chem Processes 2:15CrossRefGoogle Scholar
  49. Walter KA, Bennett G, Papoutsakis ET (1992) Molecualr characterization of two Clostridium acetobutylicum ATCC 824 butanol dehydrogenase isozyme genes. J Bacteriol 174:7149–7158PubMedPubMedCentralGoogle Scholar
  50. Wu Y-D, Xue C, Chen L-J, Bai F-W (2013) Effect of zinc supplementation on acetone-butanol-ethanol fermentation by Clostridium acetobutylicum. J Biotechnol 165:18–21PubMedCrossRefGoogle Scholar
  51. Xi H, Schneider BL, Reitzer L (2000) Purine catabolism in Escherichia coli and function of xanthine dehydrogenase in purine salvage. J Bacteriol 182:5332–5341PubMedPubMedCentralCrossRefGoogle Scholar
  52. Yerushalmi L, Volesky B (1985) Importance of agitation in acetone butanol fermentation. Biotechnol Bioeng 27:1297–1305PubMedCrossRefGoogle Scholar
  53. Zdzienicka M, Tudek B, Zielenska M, Szymczyk T (1978) Mutagenic activity of furfural in salmonella typhimurium TA100. Mutat Res 58:205–209PubMedCrossRefGoogle Scholar
  54. Zhang Y, Ujor V, Wick M, Ezeji TC (2015) Identification, purification and characterization of furfural transforming enzymes from Clostridium beijerinckii NCIMB 8052. Anaerobe 33:124–131PubMedCrossRefGoogle Scholar
  55. Zhang Y, Han B, Ezeji TC (2012) Biotransformation of furfural and 5-hydroxymethyl furfural by Clostridium acetobutylicum ATCC 824 during butanol fermentation. New Biotechnol 29:345–351CrossRefGoogle Scholar
  56. Zhang Y, Ezeji TC (2013) Transcriptional analysis of Clostridium beijerinckii NCIMB 8052 to elucidate the role of furfural stress during acetone butanol fermentation. Biotechnol Biofuels 6:66–82PubMedPubMedCentralCrossRefGoogle Scholar
  57. Zhang Y, Ezeji TC (2014) Elucidating and alleviating the impacts of lignocellulose-derived microbial inhibitors on Clostridium beijerinckii during fermentation of miscanthus giganteus to butanol. J Ind Microbiol Biotechnol 41:1505–1516PubMedCrossRefGoogle Scholar
  58. Zheng H, Wang X, Yomano LP, Shangmugan KT, Ingram LO (2012) Increase in furfural tolerance in ethanologenic Escherichia coli LY180 by plasmid-based expression of thyA. Appl Environ Microbiol 78:4346–4352PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Victor Ujor
    • 1
    • 2
  • Christopher Okonkwo
    • 1
  • Thaddeus Chukwuemeka Ezeji
    • 1
    Email author
  1. 1.Department of Animal Sciences, Ohio State Agricultural Research and Development Center (OARDC)The Ohio State UniversityWoosterUSA
  2. 2.Renewable Energy Program, Agricultural Technical InstituteThe Ohio State UniversityWoosterUSA

Personalised recommendations