Advertisement

Applied Microbiology and Biotechnology

, Volume 100, Issue 3, pp 1523–1529 | Cite as

Fermentation and genomic analysis of acetone-uncoupled butanol production by Clostridium tetanomorphum

  • Fuyu Gong
  • Guanhui Bao
  • Chunhua Zhao
  • Yanping ZhangEmail author
  • Yin Li
  • Hongjun DongEmail author
Bioenergy and biofuels

Abstract

In typical acetone–butanol–ethanol (ABE) fermentation, acetone is the main by-product (50 % of butanol mass) of butanol production, resulting in a low yield of butanol. It is known that some Clostridium tetanomorphum strains are able to produce butanol without acetone in nature. Here, we described that C. tetanomorphum strain DSM665 can produce 4.16 g/L butanol and 4.98 g/L ethanol at pH 6.0, and 9.81 g/L butanol and 1.01 g/L ethanol when adding 1 mM methyl viologen. Butyrate and acetate could be reassimilated and no acetone was produced. Further analysis indicated that the activity of the acetate/butyrate:acetoacetyl-CoA transferase responsible for acetone production is lost in C. tetanomorphum DSM665. The genome of C. tetanomorphum DSM665 was sequenced and deposited in DDBJ, EMBL, and GenBank under the accession no. APJS00000000. Sequence analysis indicated that there are no typical genes (ctfA/B and adc) that are typically parts of an acetone synthesis pathway in C. tetanomorphum DSM665. This work provides new insights in the mechanism of clostridial butanol production and should prove useful for the design of a high-butanol-producing strain.

Keywords

Clostridium tetanomorphum Acetone Butanol Fermentation ctfA/B adc 

Notes

Compliance with ethical standards

Funding

This study was funded by the National Natural Science Foundation of China (grant number 31270107), the Knowledge Innovation Program of the Chinese Academy of Sciences (grant number KSCX2-EW-J-6), and the National High Technology Research and Development Program of China (grant number 2011AA02A208).

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Bramono SE, Lam YS, Ong SL, He J (2011) A mesophilic Clostridium species that produces butanol from monosaccharides and hydrogen from polysaccharides. Bioresour Technol 102(20):9558–9563PubMedCrossRefGoogle Scholar
  2. Carlos DC, Carmen F-S, Antonia R, Marta T, Daniel R, José LG (2013) Genome sequence of the butanol hyperproducer Clostridium saccharoperbutylacetonicum N1-4. Genome Announc 1(2):e00070–13Google Scholar
  3. Clark SW, Bennett GN, Rudolph FB (1989) Isolation and characterization of mutants of Clostridium acetobutylicum ATCC 824 deficient in acetoacetyl-coenzyme A: acetate/butyrate: coenzyme A-transferase (EC 2.8.3.9) and in other solvent pathway enzymes. Appl Environ Microbiol 55(4):970–976PubMedPubMedCentralGoogle Scholar
  4. Cooksley CM, Zhang Y, Wang H, Redl S, Winzer K, Minton NP (2012) Targeted mutagenesis of the Clostridium acetobutylicum Acetone-Butanol-Ethanol fermentation pathway. Metab Eng 14(6):630–641PubMedCrossRefGoogle Scholar
  5. Dürre P (2007) Biobutanol: an attractive biofuel. Biotechnol J 2(12):1525–1534PubMedCrossRefGoogle Scholar
  6. Desai RP, Papoutsakis ET (1999) Antisense RNA strategies for metabolic engineering of Clostridium acetobutylicum. Appl Environ Microbiol 65(3):936–945PubMedPubMedCentralGoogle Scholar
  7. Gottwald M, Hippe H, Gottschalk G (1984) Formation of n-Butanol from D-Glucose by Strains of the “Clostridium tetanomorphum” Group. Appl Environ Microb 48(3):573–576Google Scholar
  8. Jang Y-S, Lee JY, Lee J, Park JH, Im JA, Eom M-H, Lee J, Lee S-H, Song H, Cho J-H (2012) Enhanced butanol production obtained by reinforcing the direct butanol-forming route in Clostridium acetobutylicum. MBio 3(5):e00314–12PubMedPubMedCentralCrossRefGoogle Scholar
  9. Jiang Y, Xu C, Dong F, Yang Y, Jiang W, Yang S (2009) Disruption of the acetoacetate decarboxylase gene in solvent-producing Clostridium acetobutylicum increases the butanol ratio. Metab Eng 11(4):284–291PubMedCrossRefGoogle Scholar
  10. Jones DT, Woods DR (1986) Acetone-butanol fermentation revisited. Microbiol Rev 50(4):484PubMedPubMedCentralGoogle Scholar
  11. Lee SY, Park JH, Jang SH, Nielsen LK, Kim J, Jung KS (2008) Fermentative butanol production by clostridia. Biotechnol Bioeng 101(2):209–228PubMedCrossRefGoogle Scholar
  12. Lehmann D, Honicke D, Ehrenreich A, Schmidt M, Weuster-Botz D, Bahl H, Lutke-Eversloh T (2012) Modifying the product pattern of Clostridium acetobutylicum: physiological effects of disrupting the acetate and acetone formation pathways. Appl Microbiol Biotechnol 94(3):743–754PubMedCrossRefGoogle Scholar
  13. Milne CB, Eddy JA, Raju R, Ardekani S, Kim P-J, Senger RS, Jin Y-S, Blaschek HP, Price ND (2011) Metabolic network reconstruction and genome-scale model of butanol-producing strain Clostridium beijerinckii NCIMB 8052. BMC Syst Biol 5(1):130PubMedPubMedCentralCrossRefGoogle Scholar
  14. Nölling J, Breton G, Omelchenko MV, Makarova KS, Zeng Q, Gibson R, Lee HM, Dubois J, Qiu D, Hitti J (2001) Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum. J Bacteriol 183(16):4823–4838PubMedPubMedCentralCrossRefGoogle Scholar
  15. Poehlein A, Hartwich K, Krabben P, Ehrenreich A, Liebl W, Dürre P, Gottschalk G, Daniel R (2013) Complete genome sequence of the solvent producer Clostridium saccharobutylicum NCP262 (DSM 13864). Genome Announc 1(6):e00997–13PubMedPubMedCentralGoogle Scholar
  16. Pruitt KD, Tatusova T, Klimke W, Maglott DR (2009) NCBI Reference Sequences: current status, policy and new initiatives. Nucleic Acids Res 37(Database issue):D32–D36PubMedPubMedCentralCrossRefGoogle Scholar
  17. Qureshi N, Ezeji TC (2008) Butanol, ‘a superior biofuel’production from agricultural residues (renewable biomass): recent progress in technology. Biofuel Bioprod Bior 2(4):319–330CrossRefGoogle Scholar
  18. Tummala SB, Welker NE, Papoutsakis ET (2003) Design of antisense RNA constructs for downregulation of the acetone formation pathway of Clostridium acetobutylicum. J Bacteriol 185(6):1923–1934PubMedPubMedCentralCrossRefGoogle Scholar
  19. Wiesenborn D, Rudolph F, Papoutsakis E (1988) Thiolase from Clostridium acetobutylicum ATCC 824 and its role in the synthesis of acids and solvents. Appl Environ Microbiol 54(11):2717–2722PubMedPubMedCentralGoogle Scholar
  20. Yarlagadda VN, Gupta A, Dodge CJ, Francis AJ (2012) Effect of exogenous electron shuttles on growth and fermentative metabolism in Clostridium sp. BC1. Bioresour Technol 108:295–299PubMedCrossRefGoogle Scholar
  21. Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18(5):821–829PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Key Laboratory of Microbial Physiological and Metabolic EngineeringInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
  2. 2.University of the Chinese Academy of SciencesBeijingChina

Personalised recommendations