Applied Microbiology and Biotechnology

, Volume 100, Issue 2, pp 837–846 | Cite as

A novel isothermal microcalorimetry tool to assess drug effects on Ancylostoma ceylanicum and Necator americanus

  • Dayana Flores
  • Gordana Panic
  • Olivier Braissant
  • Jennifer Keiser
Applied microbial and cell physiology

Abstract

Soil-transmitted helminths, which affect the poorest communities, worldwide cause a range of symptoms and morbidity, yet few treatment options are available and drug resistance is a concern. To improve and accelerate anthelminthic drug discovery, novel drug screening tools such as isothermal microcalorimetry (IMC) have been tested with great potential. In this study, we used a novel microcalorimeter, the calScreener™, to study the viability on the hookworms Necator americanus and Ancylostoma ceylanicum as well as the whipworm Trichuris muris. Significant heat flow signals could be obtained with already one adult worm per channel for all three species. High-amplitude oscillations were observed for the hookworms; however, adult T. muris showed a twofold heat flow decrease during the first 24 h. Antinematodal effects of ivermectin and levamisole at 1, 10, and 100 μg/ml were evaluated on adult N. americanus and A. ceylanicum. Levamisole-treated hookworms showed a decline in heat flow and oscillation amplitude in a dose-response manner. Heat flow for ivermectin-treated hookworms increased proportionally with increased concentrations of ivermectin, though the wavelet analysis showed an opposite trend as observed by flatter wavelets. In conclusion, the calScreener™ is an excellent tool to study drug effects on intestinal hookworms at the adult worm stage as it offers a lower detection limit than other IMC devices and the possibility to monitor worm viability online.

Keywords

Drug screening Drug discovery Hookworm Isothermal microcalorimetry Whipworm 

Supplementary material

253_2015_7081_MOESM1_ESM.pdf (172 kb)
ESM 1(PDF 171 kb)

References

  1. Braissant O, Daniels AUD (2011) Closed ampoule isothermal microcalorimetry for continuous real-time detection and evaluation of cultured mammalian cell activity and responses. Methods Mol Biol 740:191–208. doi:10.1007/978-1-61779-108-6 PubMedCrossRefGoogle Scholar
  2. Braissant O, Wirz D, Göpfert B, Daniels AUU (2010) Biomedical use of isothermal microcalorimeters. Sensors 10:9369–9383. doi:10.3390/s101009369 PubMedPubMedCentralCrossRefGoogle Scholar
  3. Braissant O, Keiser J, Meister I, Bachmann A, Wirz D, Göpfert B, Bonkat G, Wadsö I (2015) Isothermal microcalorimetry accurately detects bacteria, tumorous microtissues, and parasitic worms in a label-free well-plate assay. Biotechnol J 10:460–8. doi:10.1002/biot.201400494 PubMedPubMedCentralCrossRefGoogle Scholar
  4. Flecknell P (2002) Replacement, reduction and refinement. ALTEX 19:73–8Google Scholar
  5. Gaisford S (2012) Isothermal microcalorimetry for quantifying amorphous content in processed pharmaceuticals. Adv Drug Deliv Rev 64:431–439. doi:10.1016/j.addr.2011.11.001 PubMedCrossRefGoogle Scholar
  6. Gençay R, Selçuk F, Brandon W (2002) An introduction to wavelets and other filtering methods in finance and economics, 1st edn. Academic Press, LondonGoogle Scholar
  7. Gill JH, Redwin JM, Van Wyk JA, Lacey E (1991) Detection of resistance to ivermectin in Haemonchus contortus. Int J Parasitol 21:771–776. doi:10.1016/0020-7519(91)90144-V PubMedCrossRefGoogle Scholar
  8. Jesús C, Socorro F, Rodríguez de Rivera M (2011) New approach to Tian’s equation applied to heat conduction and liquid injection calorimeters. J Therm Anal Calorim 110:1523–1532. doi:10.1007/s10973-011-2117-1 CrossRefGoogle Scholar
  9. Keiser J, Utzinger J (2008) Efficacy of current drugs against soil-transmitted helminth infections: systematic review and meta-analysis. JAMA 299:1937–1948. doi:10.1001/jama.299.16.1937 PubMedCrossRefGoogle Scholar
  10. Keiser J, Utzinger J (2010) The drugs we have and the drugs we need against major helminth infections. Adv Parasitol 73:197–230. doi:10.1016/S0065-308X(10)73008-6 PubMedCrossRefGoogle Scholar
  11. Keiser J, Manneck T, Kirchhofer C, Braissant O (2013) Isothermal microcalorimetry to study the activity of triclabendazole and its metabolites on juvenile and adult Fasciola hepatica. Exp Parasitol 133:265–268. doi:10.1016/j.exppara.2012.11.020 PubMedCrossRefGoogle Scholar
  12. Kotze AC, Clifford S, O’Grady J, Behnke JM, McCarthy JS (2004) An in vitro larval motility assay to determine anthelmintic sensitivity for human hookworm and Strongyloides species. Am J Trop Med Hyg 71:608–616PubMedGoogle Scholar
  13. Manneck T, Braissant O, Haggenmüller Y, Keiser J (2011) Isothermal microcalorimetry to study drugs against Schistosoma mansoni. J Clin Microbiol 49:1217–1225. doi:10.1128/JCM.02382-10 PubMedPubMedCentralCrossRefGoogle Scholar
  14. Murray CC, Vos T, Lozano R, Naghavi M, Flaxman AD, Michaud C, Ezzati M, Shibuya K, Salomon JA, Abdalla S, Aboyans V, Abraham J, Ackerman I, Aggarwal R, Ahn SY, Ali MK, Alvarado M, Anderson HR, Anderson LM, Andrews KG, Atkinson C, Baddour LM, Bahalim AN, Barker-Collo S, Barrero LH, Bartels DH, Basáñez MG, Baxter A, Bell ML, Benjamin EJ, Bennett D, Bernabé E, Bhalla K, Bhandari B, Bikbov B, Bin Abdulhak A, Birbeck G, Black JA, Blencowe H, Blore JD, Blyth F, Bolliger I, Bonaventure A, Boufous S, Bourne R, Boussinesq M, Braithwaite T, Brayne C, Bridgett L, Brooker S, Brooks P, Brugha TS, Bryan-Hancock C, Bucello C, Buchbinder R, Buckle G, Budke CM, Burch M, Burney P, Burstein R, Calabria B, Campbell B, Canter CE, Carabin H, Carapetis J, Carmona L, Cella C, Charlson F, Chen H, Cheng AT, Chou D, Chugh SS, Coffeng LE, Colan SD, Colquhoun S, Colson KE, Condon J, Connor MD, Cooper LT, Corriere M, Cortinovis M, de Vaccaro KC, Couser W, Cowie BC, Criqui MH, Cross M, Dabhadkar KC, Dahiya M, Dahodwala N, Damsere-Derry J, Danaei G, Davis A, De Leo D, Degenhardt L, Dellavalle R, Delossantos A, Denenberg J, Derrett S, Des Jarlais DC, Dharmaratne SD, Dherani M, Diaz-Torne C, Dolk H, Dorsey ER, Driscoll T, Duber H, Ebel B, Edmond K, Elbaz A, Ali SE, Erskine H, Erwin PJ, Espindola P, Ewoigbokhan SE, Farzadfar F, Feigin V, Felson DT, Ferrari A, Ferri CP, Fèvre EM, Finucane MM, Flaxman S, Flood L, Foreman K, Forouzanfar MH, Fowkes FG, Fransen M, Freeman MK, Gabbe BJ, Gabriel SE, Gakidou E, Ganatra HA, Garcia B, Gaspari F, Gillum RF, Gmel G, Gonzalez-Medina D, Gosselin R, Grainger R, Grant B, Groeger J, Guillemin F, Gunnell D, Gupta R, Haagsma J, Hagan H, Halasa YA, Hall W, Haring D, Haro JM, Harrison JE, Havmoeller R, Hay RJ, Higashi H, Hill C, Hoen B, Hoffman H, Hotez PJ, Hoy D, Huang JJ, Ibeanusi SE, Jacobsen KH, James SL, Jarvis D, Jasrasaria R, Jayaraman S, Johns N, Jonas JB, Karthikeyan G, Kassebaum N, Kawakami N, Keren A, Khoo JP, King CH, Knowlton LM, Kobusingye O, Koranteng A, Krishnamurthi R, Laden F, Lalloo R, Laslett LL, Lathlean T, Leasher JL, Lee YY, Leigh J, Levinson D, Lim SS, Limb E, Lin JK, Lipnick M, Lipshultz SE, Liu W, Loane M, Ohno SL, Lyons R, Mabweijano J, MacIntyre MF, Malekzadeh R, Mallinger L, Manivannan S, Marcenes W, March L, Margolis DJ, Marks GB, Marks R, Matsumori A, Matzopoulos R, Mayosi BM, McAnulty JH, McDermott MM, McGill N, McGrath J, Medina-Mora ME, Meltzer M, Mensah GA, Merriman TR, Meyer AC, Miglioli V, Miller M, Miller TR, Mitchell PB, Mock C, Mocumbi AO, Moffitt TE, Mokdad AA, Monasta L, Montico M, Moradi-Lakeh M, Moran A, Morawska L, Mori R, Murdoch ME, Mwaniki MK, Naidoo K, Nair MN, Naldi L, Narayan KM, Nelson PK, Nelson RG, Nevitt MC, Newton CR, Nolte S, Norman P, Norman R, O’Donnell M, O’Hanlon S, Olives C, Omer SB, Ortblad K, Osborne R, Ozgediz D, Page A, Pahari B, Pandian JD, Rivero AP, Patten SB, Pearce N, Padilla RP, Perez-Ruiz F, Perico N, Pesudovs K, Phillips D, Phillips MR, Pierce K, Pion S, Polanczyk GV, Polinder S, Pope CA 3rd, Popova S, Porrini E, Pourmalek F, Prince M, Pullan RL, Ramaiah KD, Ranganathan D, Razavi H, Regan M, Rehm JT, Rein DB, Remuzzi G, Richardson K, Rivara FP, Roberts T, Robinson C, De Leòn FR, Ronfani L, Room R, Rosenfeld LC, Rushton L, Sacco RL, Saha S, Sampson U, Sanchez-Riera L, Sanman E, Schwebel DC, Scott JG, Segui-Gomez M, Shahraz S, Shepard DS, Shin H, Shivakoti R, Singh D, Singh GM, Singh JA, Singleton J, Sleet DA, Sliwa K, Smith E, Smith JL, Stapelberg NJ, Steer A, Steiner T, Stolk WA, Stovner LJ, Sudfeld C, Syed S, Tamburlini G, Tavakkoli M, Taylor HR, Taylor JA, Taylor WJ, Thomas B, Thomson WM, Thurston GD, Tleyjeh IM, Tonelli M, Towbin JA, Truelsen T, Tsilimbaris MK, Ubeda C, Undurraga EA, van der Werf MJ, van Os J, Vavilala MS, Venketasubramanian N, Wang M, Wang W, Watt K, Weatherall DJ, Weinstock MA, Weintraub R, Weisskopf MG, Weissman MM, White RA, Whiteford H, Wiebe N, Wiersma ST, Wilkinson JD, Williams HC, Williams SR, Witt E, Wolfe F, Woolf AD, Wulf S, Yeh PH, Zaidi AK, Zheng ZJ, Zonies D, Lopez AD, AlMazroa MA, Memish ZA (2012) Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380:2197–2223. doi:10.1016/S0140-6736(12)61689-4 PubMedCrossRefGoogle Scholar
  15. Pullan RL, Smith JL, Jasrasaria R, Brooker SJ (2014) Global numbers of infection and disease burden of soil transmitted helminth infections in 2010. Parasitol Vectors 7:37. doi:10.1186/1756-3305-7-37 CrossRefGoogle Scholar
  16. R Core Team (2011) R: A Language and environment for statistical computingGoogle Scholar
  17. Richards JC, Behnke JM, Duce IR (1995) In vitro studies on the relative sensitivity to ivermectin of Necator americanus and Ancylostoma ceylanicum. Int J Parasitol 25:1185–1191. doi:10.1016/0020-7519(95)00036-2 PubMedCrossRefGoogle Scholar
  18. Silbereisen A, Tritten L, Keiser J (2011) Exploration of novel in vitro assays to study drugs against Trichuris spp. J Microbiol Methods 87:169–175. doi:10.1016/j.mimet.2011.08.009 PubMedCrossRefGoogle Scholar
  19. Smout MJ, Kotze AC, Mccarthy JS, Loukas A (2010) A novel high throughput assay for anthelmintic drug screening and resistance diagnosis by real-time monitoring of parasite motility. PLoS Negl Trop Dis 4, e885. doi:10.1371/journal.pntd.0000885 PubMedPubMedCentralCrossRefGoogle Scholar
  20. Treger RS, Otchere J, Keil MF, Quagraine JE, Rai G, Mott BT, Humphries DL, Wilson M, Cappello M, Vermeire JJ (2014) In vitro screening of compounds against laboratory and field isolates of human hookworm reveals quantitative differences in anthelmintic susceptibility. Am J Trop Med Hyg 90:71–74. doi:10.4269/ajtmh.12-0547 PubMedPubMedCentralCrossRefGoogle Scholar
  21. Tritten L, Braissant O, Keiser J (2012) Comparison of novel and existing tools for studying drug sensitivity against the hookworm Ancylostoma ceylanicum in vitro. Parasitology 139:348–357. doi:10.1017/S0031182011001934 PubMedCrossRefGoogle Scholar
  22. Utzinger J, Keiser J (2004) Schistosomiasis and soil-transmitted helminthiasis: common drugs for treatment and control. Expert Opin Drug Discov 5:263–285. doi:10.1517/14656566.5.2.263 Google Scholar
  23. Wimmersberger D, Tritten L, Keiser J (2013) Development of an in vitro drug sensitivity assay for Trichuris muris first-stage larvaeGoogle Scholar
  24. Wolstenholme AJ, Rogers AT (2005) Glutamate-gated chloride channels and the mode of action of the avermectin/milbemycin anthelmintics. Parasitology 131(Suppl):S85–S95. doi:10.1017/S0031182005008218 PubMedGoogle Scholar
  25. Zaharia DC, Popa MG, Steriade AT, Muntean AA, Balint O, Micuţ R, Popa VT, Popa MI, Bogdan MA (2013) Microcalorimetry—a new method for bacterial characterisation. Pneumol 62:232–235Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Dayana Flores
    • 1
    • 2
  • Gordana Panic
    • 1
    • 2
  • Olivier Braissant
    • 3
  • Jennifer Keiser
    • 1
    • 2
  1. 1.Department of Medical Parasitology and Infection BiologySwiss Tropical and Public Health InstituteBaselSwitzerland
  2. 2.University of BaselBaselSwitzerland
  3. 3.Center of Biomechanics & BiocalorimetryUniversity of Basel c/o Department Biomedical Engineering (DBE)AllschwilSwitzerland

Personalised recommendations