Applied Microbiology and Biotechnology

, Volume 100, Issue 5, pp 2203–2212 | Cite as

Integration of bacterial expansin-like proteins into cellulosome promotes the cellulose degradation

  • Chao Chen
  • Zhenling Cui
  • Xiangfei Song
  • Ya-Jun Liu
  • Qiu CuiEmail author
  • Yingang FengEmail author
Biotechnologically Relevant Enzymes and Proteins


Cellulosomes are multi-enzyme complexes assembled by cellulases and hemicellulases through dockerin-cohesin interactions, which are the most efficient system for the degradation of lignocellulosic resources in nature. Recent genomic analysis of a cellulosome-producing anaerobe Clostridium clariflavum DSM 19732 revealed that two expansin-like proteins, Clocl_1298 and Clocl_1862, contain a dockerin module, which suggests that they are components of the cellulosome. Bacterial expansin-like proteins do not have hydrolytic activities, but can facilitate the degradation of cellulosic biomass via synergistic effects with cellulases. In this study, the synergistic effect of the expansin-like proteins with both native and designer cellulosomes was investigated. The free expansin-like proteins, including expansin-like domains of Clocl_1298 and Clocl_1862, as well as a well-studied bacterial expansin-like protein BsEXLX1 from Bacillus subtilis, promoted the cellulose degradation by native cellulosomes, indicating the cellulosomal expansin-like proteins have the synergistic function. When they were integrated into a trivalent designer cellulosome, the synergistic effect was further amplified. The sequence and structure analyses indicated that these cellulosomal expansin-like proteins share the conserved functional mechanism with other bacterial expansin-like proteins. These results indicated that non-catalytic expansin-like proteins in the cellulosome can enhance the activity of the cellulosome in lignocellulose degradation. The involvement of functional expansin-like proteins in the cellulosome also implies new physiological functions of bacterial expansin-like proteins and cellulosomes.


Expansin Cellulosome Cellulose hydrolysis Dockerin Clostridium clariflavum 



This study was supported by the National Basic Research Program of China (973 Program, Grant No. 2011CB707404) and the National Natural Science Foundation of China (grant nos. 31270784, 31300035 and 31470210).

Compliance with ethical standards

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

253_2015_7071_MOESM1_ESM.pdf (1.4 mb)
ESM 1 (PDF 1386 kb)


  1. Artzi L, Dassa B, Borovok I, Shamshoum M, Lamed R, Bayer EA (2014) Cellulosomics of the cellulolytic thermophile Clostridium clariflavum. Biotechnol Biofuels 7:100. doi: 10.1186/1754-6834-7-100 PubMedCentralCrossRefPubMedGoogle Scholar
  2. Artzi L, Morag E, Barak Y, Lamed R, Bayer EA (2015) Clostridium clariflavum: key cellulosome players are revealed by proteomic analysis. mBio 6(3):e00411–e00415. doi: 10.1128/mBio.00411-15 PubMedCentralCrossRefPubMedGoogle Scholar
  3. Bayer EA, Belaich JP, Shoham Y, Lamed R (2004) The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. Annu Rev Microbiol 58:521–554. doi: 10.1146/annurev.micro.57.030502.091022 CrossRefPubMedGoogle Scholar
  4. Bayer EA, Lamed R, White BA, Flint HJ (2008) From cellulosomes to cellulosomics. Chem Rec 8(6):364–377. doi: 10.1002/tcr.20160 CrossRefPubMedGoogle Scholar
  5. Ben David Y, Dassa B, Borovok I, Lamed R, Koropatkin NM, Martens EC, White BA, Bernalier-Donadille A, Duncan SH, Flint HJ, Bayer EA, Moraïs S (2015) Ruminococcal cellulosome systems from rumen to human. Environ Microbiol 17(9):3407–3426. doi: 10.1111/1462-2920.12868 CrossRefPubMedGoogle Scholar
  6. Blouzard JC, Coutinho PM, Fierobe HP, Henrissat B, Lignon S, Tardif C, Pages S, de Philip P (2010) Modulation of cellulosome composition in Clostridium cellulolyticum: adaptation to the polysaccharide environment revealed by proteomic and carbohydrate-active enzyme analyses. Proteomics 10(3):541–554. doi: 10.1002/pmic.200900311 CrossRefPubMedGoogle Scholar
  7. Bunterngsook B, Mhuantong W, Champreda V, Thamchaipenet A, Eurwilaichitr L (2014) Identification of novel bacterial expansins and their synergistic actions on cellulose degradation. Bioresour Technol 159:64–71. doi: 10.1016/j.biortech.2014.02.004 CrossRefPubMedGoogle Scholar
  8. Bunterngsook B, Eurwilaichitr L, Thamchaipenet A, Champreda V (2015) Binding characteristics and synergistic effects of bacterial expansins on cellulosic and hemicellulosic substrates. Bioresour Technol 176:129–135. doi: 10.1016/j.biortech.2014.11.042 CrossRefPubMedGoogle Scholar
  9. Chen C, Cui Z, Xiao Y, Cui Q, Smith SP, Lamed R, Bayer EA, Feng Y (2014) Revisiting the NMR solution structure of the Cel48S type-I dockerin module from Clostridium thermocellum reveals a cohesin-primed conformation. J Struct Biol 188(2):188–193. doi: 10.1016/j.jsb.2014.09.006 CrossRefPubMedGoogle Scholar
  10. Cosgrove DJ (2000) Loosening of plant cell walls by expansins. Nature 407(6802):321–326. doi: 10.1038/35030000 CrossRefPubMedGoogle Scholar
  11. Cui GZ, Hong W, Zhang J, Li WL, Feng Y, Liu YJ, Cui Q (2012) Targeted gene engineering in Clostridium cellulolyticum H10 without methylation. J Microbiol Methods 89(3):201–208. doi: 10.1016/j.mimet.2012.02.015 CrossRefPubMedGoogle Scholar
  12. Cui Z, Li Y, Xiao Y, Feng Y, Cui Q (2013) Resonance assignments of cohesin and dockerin domains from Clostridium acetobutylicum ATCC824. Biomol NMR Assign 7(1):73–76. doi: 10.1007/s12104-012-9381-2 CrossRefPubMedGoogle Scholar
  13. Cuiv PO, Gupta R, Goswami HP, Morrison M (2013) Extending the cellulosome paradigm: the modular Clostridium thermocellum cellulosomal serpin PinA is a broad-spectrum inhibitor of subtilisin-like proteases. Appl Environ Microbiol 79(19):6173–6175. doi: 10.1128/aem.01912-13 CrossRefGoogle Scholar
  14. Demain AL, Newcomb M, Wu JH (2005) Cellulase, clostridia, and ethanol. Microbiol Mol Biol Rev 69(1):124–154. doi: 10.1128/mmbr.69.1.124-154.2005 PubMedCentralCrossRefPubMedGoogle Scholar
  15. Fierobe HP, Bayer EA, Tardif C, Czjzek M, Mechaly A, Belaich A, Lamed R, Shoham Y, Belaich JP (2002) Degradation of cellulose substrates by cellulosome chimeras. J Biol Chem 277(51):49621–49630. doi: 10.1074/jbc.M207672200 CrossRefPubMedGoogle Scholar
  16. Georgelis N, Tabuchi A, Nikolaidis N, Cosgrove DJ (2011) Structure-function analysis of the bacterial expansin EXLX1. J Biol Chem 286(19):16814–16823. doi: 10.1074/jbc.M111.225037 PubMedCentralCrossRefPubMedGoogle Scholar
  17. Georgelis N, Nikolaidis N, Cosgrove DJ (2014) Biochemical analysis of expansin-like proteins from microbes. Carbohydr Polym 100:17–23. doi: 10.1016/j.carbpol.2013.04.094 CrossRefPubMedGoogle Scholar
  18. Georgelis N, Nikolaidis N, Cosgrove DJ (2015) Bacterial expansins and related proteins from the world of microbes. Appl Microbiol Biotechnol 99(9):3807–3823. doi: 10.1007/s00253-015-6534-0 CrossRefPubMedGoogle Scholar
  19. Gold ND, Martin VJJ (2007) Global view of the Clostridium thermocellum cellulosome revealed by quantitative proteomic analysis. J Bacteriol 189(19):6787–6795. doi: 10.1128/Jb.00882-07 PubMedCentralCrossRefPubMedGoogle Scholar
  20. Hong W, Zhang J, Feng Y, Mohr G, Lambowitz AM, Cui GZ, Liu YJ, Cui Q (2014) The contribution of cellulosomal scaffoldins to cellulose hydrolysis by Clostridium thermocellum analyzed by using thermotargetrons. Biotechnol Biofuels 7:80. doi: 10.1186/1754-6834-7-80 PubMedCentralCrossRefPubMedGoogle Scholar
  21. Izquierdo JA, Goodwin L, Davenport KW, Teshima H, Bruce D, Detter C, Tapia R, Han S, Land M, Hauser L, Jeffries CD, Han J, Pitluck S, Nolan M, Chen A, Huntemann M, Mavromatis K, Mikhailova N, Liolios K, Woyke T, Lynd LR (2012) Complete genome sequence of Clostridium clariflavum DSM 19732. Stand Genom Sci 6(1):104–115. doi: 10.4056/sigs.2535732 CrossRefGoogle Scholar
  22. Kahel-Raifer H, Jindou S, Bahari L, Nataf Y, Shoham Y, Bayer EA, Borovok I, Lamed R (2010) The unique set of putative membrane-associated anti-sigma factors in Clostridium thermocellum suggests a novel extracellular carbohydrate-sensing mechanism involved in gene regulation. FEMS Microbiol Lett 308(1):84–93. doi: 10.1111/j.1574-6968.2010.01997.x CrossRefPubMedGoogle Scholar
  23. Kerff F, Amoroso A, Herman R, Sauvage E, Petrella S, Filee P, Charlier P, Joris B, Tabuchi A, Nikolaidis N, Cosgrove DJ (2008) Crystal structure and activity of Bacillus subtilis YoaJ (EXLX1), a bacterial expansin that promotes root colonization. Proc Natl Acad Sci U S A 105(44):16876–16881. doi: 10.1073/pnas.0809382105 PubMedCentralCrossRefPubMedGoogle Scholar
  24. Kim ES, Lee HJ, Bang WG, Choi IG, Kim KH (2008) A novel cellulase activity enhancing protein from Bacillus subtilis, a functional homolog of a plant expansin. J Biotechnol 136:S426–S426. doi: 10.1016/j.jbiotec.2008.07.986 CrossRefGoogle Scholar
  25. Kim ES, Lee HJ, Bang WG, Choi IG, Kim KH (2009) Functional characterization of a bacterial expansin from Bacillus subtilis for enhanced enzymatic hydrolysis of cellulose. Biotechnol Bioeng 102(5):1342–1353. doi: 10.1002/bit.22193 CrossRefPubMedGoogle Scholar
  26. Kim IJ, Ko HJ, Kim TW, Nam KH, Choi IG, Kim KH (2013) Binding characteristics of a bacterial expansin (BsEXLX1) for various types of pretreated lignocellulose. Appl Microbiol Biotechnol 97(12):5381–5388. doi: 10.1007/s00253-012-4412-6 CrossRefPubMedGoogle Scholar
  27. Koradi R, Billeter M, Wuthrich K (1996) MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph 14(1):51–55. doi: 10.1016/0263-7855(96)00009-4 CrossRefPubMedGoogle Scholar
  28. Kumar R, Singh S, Singh OV (2008) Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Biotechnol 35(5):377–391. doi: 10.1007/s10295-008-0327-8 CrossRefPubMedGoogle Scholar
  29. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and clustal X version 2.0. Bioinformatics 23(21):2947–2948. doi: 10.1093/bioinformatics/btm404 CrossRefPubMedGoogle Scholar
  30. Lee HJ, Kim IJ, Kim JF, Choi IG, Kim KH (2013) An expansin from the marine bacterium Hahella chejuensis acts synergistically with xylanase and enhances xylan hydrolysis. Bioresour Technol 149:516–519. doi: 10.1016/j.biortech.2013.09.086 CrossRefPubMedGoogle Scholar
  31. Meguro H, Morisaka H, Kuroda K, Miyake H, Tamaru Y, Ueda M (2011) Putative role of cellulosomal protease inhibitors in Clostridium cellulovorans based on gene expression and measurement of activities. J Bacteriol 193(19):5527–5530. doi: 10.1128/jb.05022-11 PubMedCentralCrossRefPubMedGoogle Scholar
  32. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31(3):426–428. doi: 10.1021/ac60147a030 CrossRefGoogle Scholar
  33. Morgenstern EM, Bayer EA, Lamed R (1992) Affinity digestion for the near-total recovery of purified cellulosome from Clostridium thermocellum. Enzym Microb Technol 14(4):289–292. doi: 10.1016/0141-0229(92)90153-F CrossRefGoogle Scholar
  34. Nikolaidis N, Doran N, Cosgrove DJ (2014) Plant expansins in bacteria and fungi: evolution by horizontal gene transfer and independent domain fusion. Mol Biol Evol 31(2):376–386. doi: 10.1093/molbev/mst206 CrossRefPubMedGoogle Scholar
  35. Rodriguez Jr M, Raman B, Pan C, Hurst GB, McKeown CK, Lankford PK, Samatova NF, Mielenz JR (2009) Impact of pretreated switchgrass and biomass carbohydrates on Clostridium thermocellum ATCC 27405 cellulosome composition: a quantitative proteomic analysis. PLoS One 4(4):e5271. doi: 10.1371/journal.pone.0005271 PubMedCentralCrossRefPubMedGoogle Scholar
  36. Robert X, Gouet P (2014) Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res 42 (Web Server issue):W320-W324. doi: 10.1093/nar/gku316
  37. Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234(3):779–815. doi: 10.1006/jmbi.1993.1626 CrossRefPubMedGoogle Scholar
  38. Suzuki H, Vuong TV, Gong Y, Chan K, Ho CY, Master ER, Kondo A (2014) Sequence diversity and gene expression analyses of expansin-related proteins in the white-rot basidiomycete, Phanerochaete carnosa. Fungal Genet Biol 72:115–123. doi: 10.1016/j.fgb.2014.05.008 CrossRefPubMedGoogle Scholar
  39. Tsai SL, Oh J, Singh S, Chen R, Chen W (2009) Functional assembly of minicellulosomes on the Saccharomyces cerevisiae cell surface for cellulose hydrolysis and ethanol production. Appl Environ Microbiol 75(19):6087–6093. doi: 10.1128/aem.01538-09 PubMedCentralCrossRefPubMedGoogle Scholar
  40. Vazana Y, Morais S, Barak Y, Lamed R, Bayer EA (2010) Interplay between Clostridium thermocellum family 48 and family 9 cellulases in cellulosomal versus noncellulosomal states. Appl Environ Microbiol 76(10):3236–3243. doi: 10.1128/aem.00009-10 PubMedCentralCrossRefPubMedGoogle Scholar
  41. Xu T, Li Y, He Z, Zhou J (2014) Dockerin-containing protease inhibitor protects key cellulosomal cellulases from proteolysis in Clostridium cellulolyticum. Mol Microbiol 91(4):694–705. doi: 10.1111/mmi.12488 CrossRefPubMedGoogle Scholar
  42. Yaron S, Morag E, Bayer EA, Lamed R, Shoham Y (1995) Expression, purification and subunit-binding properties of cohesins 2 and 3 of the Clostridium thermocellum cellulosome. FEBS Lett 360(2):121–124. doi: 10.1016/0014-5793(95)00074-J CrossRefPubMedGoogle Scholar
  43. Zverlov VV, Kellermann J, Schwarz WH (2005) Functional subgenomics of Clostridium thermocellum cellulosomal genes: identification of the major catalytic components in the extracellular complex and detection of three new enzymes. Proteomics 5(14):3646–3653. doi: 10.1002/pmic.200401199 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
  2. 2.Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
  3. 3.CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
  4. 4.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations