Applied Microbiology and Biotechnology

, Volume 100, Issue 2, pp 781–796 | Cite as

Spore behaviors reveal a category of mating-competent infertile heterokaryons in the offspring of the medicinal fungus Agaricus subrufescens

  • Manuela Rocha de Brito
  • Marie Foulongne-Oriol
  • Magalie Moinard
  • Eustáquio Souza Dias
  • Jean-Michel Savoie
  • Philippe Callac
Applied Genetics and Molecular Biotechnology

Abstract

Strain breeding is much less advanced in the edible and medicinal species Agaricus subrufescens than in Agaricus bisporus, the button mushroom. Both species have a unifactorial system of sexual incompatibility, a mating type locus tightly linked to a centromere, and basidia producing both homokaryotic (n) and heterokaryotic (n + n) spores. In A. bisporus, breeding is mainly based on direct selection among the heterokaryotic offspring and on hybridization between homokaryotic offspring. The parental heterozygosity is highly maintained in the heterokaryotic offspring due to suppression of recombination and preferential pairing in the spores of nuclei, each one per second meiotic divisions; such “non-sister nuclei” heterokaryons are fertile. In A. subrufescens, recent studies revealed that recombination is not suppressed and that nuclei from the same second meiotic division can also be paired in a spore that give rise to a “sister nuclei” heterokaryon in which the nuclei bear the same mating type allele. The objective of the present work was to investigate the potential function of the different categories of spores in A. subrufescens and their possible use in a genetic breeding program. Using eight co-dominant molecular markers, we found that half of the offspring of the A. subrufescens strain WC837 were heterokaryotic, one quarter of them being sister nuclei heterokaryons. These heterokaryons were infertile and behaved like homokaryons, being even able to cross between each other. In contrast, non-sister nuclei heterokaryons could fruit but inconsistently due to inbreeding depression. Potential roles of these two categories of heterokaryons in nature and consequences for strain breeding are discussed.

Keywords

Mushroom Pseudohomothallism Buller phenomenon Life cycle Breeding program 

Supplementary material

253_2015_7070_MOESM1_ESM.pdf (184 kb)
ESM 1(PDF 183 kb)

References

  1. Billiard S, López-Villavicencio M, Devier B, Hood ME, Fairhead C, Giraud T (2011) Having sex, yes, but with whom? Inferences from fungi on the evolution of anisogamy and mating types. Biol Rev Camb Philos Soc 86:421–442. doi:10.1111/j.1469-185X.2010.00153.x PubMedCrossRefGoogle Scholar
  2. Billiard S, López-Villavicencio M, Hood ME, Giraud T (2012) Sex, outcrossing and mating types: unsolved questions in fungi and beyond. J Evol Biol 25:1020–1038. doi:10.1111/j.1420-9101.2012.02495.x PubMedCrossRefGoogle Scholar
  3. Buller AHR (1931) Research on fungi, vol IV. Longmans, Green and Co, LondonGoogle Scholar
  4. Burnett JH, Boulter ME (1963) The mating systems of fungi II. Mating systems of the gasteromycetes, Mycocalia denudata and M. duriaeana. New Phytol 62:217–236. doi:10.1111/j.1469-8137.1963.tb06328.x CrossRefGoogle Scholar
  5. Callac P, Billette C, Imbernon M, Kerrigan RW (1993) Morphological, genetic, and interfertility analyses reveal a novel, tetrasporic variety of Agaricus bisporus from the Sonoran desert of California. Mycologia 85:835–851. doi:10.2307/3760617 CrossRefGoogle Scholar
  6. Callac P, Desmerger C, Kerrigan RW, Imbernon M (1997) Conservation of genetic linkage with map expansion in distantly related crosses of Agaricus bisporus. FEMS Microbiol Lett 146:235–240. doi:10.1016/S0378-1097(96)00482-X PubMedCrossRefGoogle Scholar
  7. Callac P, Spataro C, Caille A, Imbernon M (2006) Evidence for outcrossing via the Buller phenomenon in a substrate simultaneously inoculated with spores and mycelium of Agaricus bisporus. Appl Environ Microbiol 72:2366–2372. doi:10.1128/AEM.72.4.2366-2372.2006 PubMedPubMedCentralCrossRefGoogle Scholar
  8. Callac P, Imbernon M, Savoie JM (2008) Outcrossing via the Buller phenomenon in a substrate simultaneously inoculated with spores and mycelium of Agaricus bisporus creates variability for agronomic traits. In: Lelley JI, Buswell JA (eds) Proceedings of the 6th International Conference on Mushroom Biology and Mushroom Products. GAMU, Krefeld, Germany p 113–119. http://wsmbmp.org/Previous_Conference_6.html
  9. Calvo-Bado L, Noble R, Challen M, Dobrovin-Pennington A, Elliott T (2000) Sexuality and genetic identity in the Agaricus Section Arvenses. Appl Environ Microbiol 66:728–734. doi:10.1128/AEM.66.2.728-734.2000 PubMedPubMedCentralCrossRefGoogle Scholar
  10. Challen MP, Elliott TJ (1989) Segregation of genetic markers in the 2-spored secondarily homothallic basidiomycete Coprinus bilanatus. Theor Appl Genet 78:601–607. doi:10.1007/BF00290848 PubMedCrossRefGoogle Scholar
  11. Elliott TJ, Challen MP (1983) Genetic ratios in secondarily homothallic basidiomycetes. Exp Mycol 7:170–174. doi:10.1016/0147-5975(83)90060-9 CrossRefGoogle Scholar
  12. Evans HJ (1959) Nuclear behaviour in the cultivated mushroom. Chromosoma 10:115–135. doi:10.1007/BF00396566 PubMedCrossRefGoogle Scholar
  13. Foulongne-Oriol M, Spataro C, Cathalot V, Monllor S, Savoie JM (2010) An expanded genetic linkage map of Agaricus bisporus based on AFLP, SSR and CAPS markers sheds light on the recombination behaviour of the species. Fungal Genet Biol 47:226–236. doi:10.1016/j.fgb.2009.12.003 PubMedCrossRefGoogle Scholar
  14. Foulongne-Oriol M, Lapalu M, Ferandon C, Spataro C, Ferrer N, Amslem J, Savoie JM (2014) The first set of expressed sequence tags (EST) from the medicinal mushroom Agaricus subrufescens delivers resource for gene discovery and marker development. Appl Microbiol Biotechnol 98:7879–7892. doi:10.1007/s00253-014-5844-y PubMedCrossRefGoogle Scholar
  15. Fritsche G (1983) Breeding Agaricus bisporus at the mushroom experimental station, Horst. Mushroom J 122:49–53Google Scholar
  16. Gui Y, Zhu GS, Callac P, Hyde KD, Parra LA, Chen J, Yang TJ, Huang WB, Gong GL, Liu ZY (2014) Agaricus section Arvenses: three new species in highland subtropical Southwest China. Fungal Biol 119:79–94. doi:10.1016/j.funbio.2014.10.005 PubMedCrossRefGoogle Scholar
  17. Imbernon M, Callac P, Gasqui P, Kerrigan RW, Velcko AJ Jr (1996) BSN, the primary determinant of basidial spore number and reproductive mode in Agaricus bisporus, maps to chromosome I. Mycologia 88:749–761. doi:10.2307/3760970 CrossRefGoogle Scholar
  18. Kamzolkina OV, Volkova VN, Kozlova MV, Pancheva EV, Dyakov YT, Callac P (2006) Karyological evidence for meiosis in the three different types of life cycles existing in Agaricus bisporus. Mycologia 98:763–770. doi:10.3852/mycologia.98.5.763 PubMedCrossRefGoogle Scholar
  19. Kemp RFO (1974) Bifactorial incompatibility in the two-spored basidiomycetes Coprinus sassii and C. bilanatus. Trans Br Mycol Soc 62:547–555. doi:10.1016/S0007-1536(74)80066-5 CrossRefGoogle Scholar
  20. Kemp RFO (1985) Gene segregation in the 2-spored basidiomycete, Coprinus bilanatus. Heredity 54:391–395CrossRefGoogle Scholar
  21. Kennedy ME, Burnett JH (1956) Amphithallism in fungi. Nature 177:882–883. doi:10.1038/177882a0 CrossRefGoogle Scholar
  22. Kerrigan RW (1993) New prospects for Agaricus bisporus strain improvement. Rep Tottori Mycol Inst 31:188–200Google Scholar
  23. Kerrigan RW (2005) Agaricus subrufescens, a cultivated edible and medicinal mushroom, and its synonyms. Mycologia 100:876–892. doi:10.3852/mycologia.97.1.12 CrossRefGoogle Scholar
  24. Kerrigan RW, Baller LM, Horgen PA, Anderson JB (1992) Strategies for the efficient recovery of Agaricus bisporus homokaryons. Mycologia 84:575–579. doi:10.2307/3760324 CrossRefGoogle Scholar
  25. Kerrigan RW, Royer JC, Baller LM, Kohli Y, Horgen PA, Anderson JB (1993) Meiotic behavior and linkage relationships in the secondarily homothallic fungus Agaricus bisporus. Genetics 133:225–236PubMedPubMedCentralGoogle Scholar
  26. Kerrigan RW, Imbernon M, Callac P, Billette C, Olivier JM (1994) The heterothallic life cycle of Agaricus bisporus var. burnettii, and the inheritance of its tetrasporic trait. Exp Mycol 18:193–210. doi:10.1006/emyc.1994.1020 CrossRefGoogle Scholar
  27. Kühner R (1977) Variation of nuclear behavior in the homobasidiomycetes. Trans Br Mycol Soc 68:1–16. doi:10.1016/S0007-1536(77)80145-9 CrossRefGoogle Scholar
  28. Lamoure D (1989) Indices of useful information for incompatibility tests in basidiomycetes. V.—Agaricales sensu lato. Cryptogam Mycol 10:41–80Google Scholar
  29. Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181. doi:10.1016/0888-7543(87)90010-3 PubMedCrossRefGoogle Scholar
  30. Lange M (1952) Species concepts in the genus Coprinus. Dansk Bot Arkiv 14:1–140Google Scholar
  31. Langton FA, Elliott TJ (1980) Genetics of secondarily homothallic basidiomycetes. Heredity 45:99–106. doi:10.1038/hdy.1980.53 CrossRefGoogle Scholar
  32. Largeteau ML, Llarena-Hernández RC, Regnault-Roger C, Savoie JM (2011) The medicinal Agaricus mushroom cultivated in Brazil: biology, cultivation and non-medicinal valorization. Appl Microbiol Biotechnol 92:897–907. doi:10.1007/s00253-011-3630-7 PubMedCrossRefGoogle Scholar
  33. Llarena-Hernández RC, Largeteau ML, Farnet AM, Foulongne-Oriol M, Minvielle N, Regnault-Roger C, Savoie JM (2013) Potential of European wild strains of Agaricus subrufescens for productivity and quality on wheat straw based compost. World J Microbiol Biotechnol 29:1243–1253. doi:10.1007/s11274-013-1287-3 PubMedCrossRefGoogle Scholar
  34. Llarena-Hernández RC, Largeteau ML, Ferrer N, Regnault-Roger C, Savoie JM (2014) Optimization of the cultivation conditions for mushroom production with European wild strains of Agaricus subrufescens and Brazilian cultivars. J Sci Food Agric 94:77–84. doi:10.1002/jsfa.6200 PubMedCrossRefGoogle Scholar
  35. Moquet F, Guedes-Lafargue MR, Mamoun M, Olivier JM (1998) Selfreproduction induced variability in agronomic traits for a wild Agaricus bisporus. Mycologia 90:806–812CrossRefGoogle Scholar
  36. Morin E, Kohler A, Baker AR, Foulongne-Oriol M, Lombard V, Nagy LG, Ohm RA, Patyshakuliyeva A, Brun A, Aerts AL, Bailey AM, Billette C, Coutinho PM, Deakin G, Doddapaneni H, Floudas D, Grimwood J, Hildén K, Kües U, LaButti KM, Lapidus A, Lindquist EA, Lucas SM, Murat C, Riley RW, Salamov AA, Schmutz J, Subramanian V, Wösten HAB, Xu J, Eastwood DC, Foster GD, Sonnenberg ASM, Cullen D, de Vries RP, Lundell T, Hibbett DS, Henrissat B, Burton KS, Kerrigan RW, Challen MP, Grigoriev IV, Martin F (2012) Genome sequence of the button mushroom Agaricus bisporus reveals mechanisms governing adaptation to a humic-rich ecological niche. Proc Natl Acad Sci U S A 109:17501–17506. doi:10.1073/pnas.1206847109 PubMedPubMedCentralCrossRefGoogle Scholar
  37. Neff MM, Neff JD, Chory J, Pepper AE (1998) dCAPS, a simple technique for the genetic analysis of single nucleotide polymorphisms: experimental applications in Arabidopsis thaliana genetics. Plant J 14:387–392. doi:10.1046/j.1365-313X.1998.00124.x PubMedCrossRefGoogle Scholar
  38. Parra LA (2013) Agaricus L. Allopsalliota Nauta & Bas. (Parte II). Candusso, AlassioGoogle Scholar
  39. Peterson KR, Desjardin DE, Hemmes DE (2000) Agaricales of the Hawaiian Islands. 6. Agaricaceae I: Agaricaceae: Agaricus and Melanophyllum. Sydowia 52:204–257Google Scholar
  40. Quintanilha A (1937) Contribution à l’étude génétique du phénomène de Buller. C R Hebd Seances Acad Sci 205:745–747Google Scholar
  41. Raper CA (1976) Sexuality and life cycle of the edible, wild Agaricus bitorquis. Microbiology 95:54–66. doi:10.1099/00221287-95-1-54 Google Scholar
  42. Raper CA, Raper JR, Miller RE (1972) Genetic analysis of the life cycle of Agaricus bisporus. Mycologia 64:1088–1117CrossRefGoogle Scholar
  43. Rast D, Stäuble EJ (1970) On the mode of action of isovaleric acid in stimulating the germination of Agaricus bisporus spores. New Phytol 69:557–566. doi:10.1111/j.1469-8137.1970.tb07608.x CrossRefGoogle Scholar
  44. Sonnenberg ASM, Baars JJP, Hendrickx PM, Lavrijssen B, Gao W, Weijn A, Mes JJ (2011) Breeding and strain protection in the button mushroom Agaricus bisporus. In: Savoie JM, Foulongne-Oriol M, Largeteau Largeteau M, Barroso G (eds) Proceedings of the 7th International Conference on Mushroom Biology and Mushroom products, vol 1. INRA Bordeaux, France, p 7–15. http://wsmbmp.org/Previous_Conference_7.html
  45. Summerbell RC, Castle AJ, Horgen PA, Anderson JB (1989) Inheritance of restriction fragment length polymorphisms in Agaricus brunnescens. Genetics 123:293–300PubMedPubMedCentralGoogle Scholar
  46. Thongklang N, Hoang E, Estrada AER, Sysouphanthong P, Moinard M, Hyde KD, Kerrigan RW, Foulongne-Oriol M, Callac P (2014) Evidence for amphithallism and broad geographical hybridization potential among Agaricus subrufescens isolates from Brazil, France and Thailand. Fungal Biol 188:1013–1024. doi:10.1016/j.funbio.2014.10.004 CrossRefGoogle Scholar
  47. Wisitrassameewong K, Karunarathna SC, Thongklang N, Zhao R, Callac P, Chukeatirote E, Bahkali AH, Hyde KD (2012a) Agaricus subrufescens: new to Thailand. Chiang Mai J Sci 39:131–146Google Scholar
  48. Wisitrassameewong K, Karunarathna SC, Thongklang N, Zhao R, Callac P, Moukha S, Ferandon C, Chukeatirote E, Hyde KD (2012b) Agaricus subrufescens: a review. Saudi J Biol Sci 19:131–146. doi:10.1016/j.sjbs.2012.01.003 PubMedPubMedCentralCrossRefGoogle Scholar
  49. Xu J (1995) Analysis of inbreeding depression in Agaricus bisporus. Genetics 141:137–145PubMedPubMedCentralGoogle Scholar
  50. Xu J, Kerrigan RW, Horgen PA, Anderson JB (1993) Localization of the mating type gene in Agaricus bisporus. Appl Environ Microbiol 59:3044–3049PubMedPubMedCentralGoogle Scholar
  51. Xu J, Horgen PA, Anderson JB (1996) Somatic recombination in the cultivated mushroom Agaricus bisporus. Mycol Res 100:188–192. doi:10.1016/S0953-7562(96)80119-5 CrossRefGoogle Scholar
  52. Zhao R, Karunarathna S, Raspe O, Parra LA, Guinberteau J, Moinard M, De Kesel A, Barroso G, Courtecuisse R, Hyde KD, Guelly AK, Desjardin DE, Callac P (2011) Major clades in tropical Agaricus. Fungal Divers 51:279–296. doi:10.1007/s13225-011-0136-7 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Manuela Rocha de Brito
    • 1
    • 2
  • Marie Foulongne-Oriol
    • 1
  • Magalie Moinard
    • 1
  • Eustáquio Souza Dias
    • 2
  • Jean-Michel Savoie
    • 1
  • Philippe Callac
    • 1
  1. 1.INRA, UR1264 MycSA, Mycologie et Sécurité des AlimentsVillenave d’Ornon CedexFrance
  2. 2.Departamento de BiologiaUFLA, Universidade Federal de LavrasLavrasBrazil

Personalised recommendations