Advertisement

Applied Microbiology and Biotechnology

, Volume 100, Issue 4, pp 1753–1764 | Cite as

Characterization of a poly(butylene adipate-co-terephthalate)-hydrolyzing lipase from Pelosinus fermentans

  • Antonino Biundo
  • Altijana Hromic
  • Tea Pavkov-Keller
  • Karl Gruber
  • Felice Quartinello
  • Karolina Haernvall
  • Veronika Perz
  • Miriam S. Arrell
  • Manfred Zinn
  • Doris Ribitsch
  • Georg M. Guebitz
Biotechnologically relevant enzymes and proteins

Abstract

Certain α/β hydrolases have the ability to hydrolyze synthetic polyesters. While their partial hydrolysis has a potential for surface functionalization, complete hydrolysis allows recycling of valuable building blocks. Although knowledge about biodegradation of these materials is important regarding their fate in the environment, it is currently limited to aerobic organisms. A lipase from the anaerobic groundwater organism Pelosinus fermentans DSM 17108 (PfL1) was cloned and expressed in Escherichia coli BL21-Gold(DE3) and purified from the cell extract. Biochemical characterization with small substrates showed thermoalkalophilic properties (T opt = 50 °C, pHopt = 7.5) and higher activity towards para-nitrophenyl octanoate (12.7 U mg−1) compared to longer and shorter chain lengths (C14 0.7 U mg−1 and C2 4.3 U mg−1, respectively). Crystallization and determination of the 3-D structure displayed the presence of a lid structure and a zinc ion surrounded by an extra domain. These properties classify the enzyme into the I.5 lipase family. PfL1 is able to hydrolyze poly(1,4-butylene adipate-co-terephthalate) (PBAT) polymeric substrates. The hydrolysis of PBAT showed the release of small building blocks as detected by liquid chromatography-mass spectrometry (LC-MS). Protein dynamics seem to be involved with lid opening for the hydrolysis of PBAT by PfL1.

Keywords

Anaerobic degradation PBAT Polymer hydrolysis Lipase 

Notes

Acknowledgments

This project has received funding from the European Union’s Seventh Framework Programme for research, technological development, and demonstration under grant agreement no. 289253. This work has also been supported by the Federal Ministry of Science, Research and Economy (BMWFW), the federal Ministry of Traffic, Innovation and Technology (BMVIT), the Styrian Business Promotion Agency SFG, and the Standortagentur Tirol and ZIT-Technology Agency of the City of Vienna through the COMET-Funding Program managed by the Austrian Research Promotion Agency FFG. We highly appreciate the support of the beamline staff at the ESRF in Grenoble, France, during diffraction data collection. We acknowledge Stephanie Follonier at HES-SO Valais (Sion, Switzerland) for the help during the experiments with PHBV.

Conflict of interest

The authors declare no financial or commercial conflict of interest.

Supplementary material

253_2015_7031_MOESM1_ESM.pdf (702 kb)
ESM 1 (PDF 701 kb)

References

  1. Acero EH, Ribitsch D, Steinkellner G, Gruber K, Greimel K, Eiteljoerg I, Trotscha E, Wei R, Zimmermann W, Zinn M, Cavaco-Paulo A, Freddi G, Schwab H, Guebitz G (2011) Enzymatic surface hydrolysis of PET: effect of structural diversity on kinetic properties of cutinases from Thermobifida. Macromolecules 44:4632–4640. doi: 10.1021/ma200949p CrossRefGoogle Scholar
  2. Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung LW, Kapral GJ, Grosse-Kunstleve RW, McCoy AJ, Moriarty NW, Oeffner R, Read RJ, Richardson DC, Richardson JS, Terwilliger TC, Zwart PH (2010) PHENIX: a comprehensive python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66(Pt 2):213–221. doi: 10.1107/s0907444909052925 PubMedCentralCrossRefPubMedGoogle Scholar
  3. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410. doi: 10.1016/s0022-2836(05)80360-2 CrossRefPubMedGoogle Scholar
  4. Ansari SA, Husain Q (2012) Potential applications of enzymes immobilized on/in nano materials: a review. Biotechnol Adv 30(3):512–523. doi: 10.1016/j.biotechadv.2011.09.005 CrossRefPubMedGoogle Scholar
  5. Arpigny JL, Jaeger KE (1999) Bacterial lipolytic enzymes: classification and properties. Biochem J 343(Pt 1):177–183PubMedCentralCrossRefPubMedGoogle Scholar
  6. Asti A, Gioglio L (2014) Natural and synthetic biodegradable polymers: different scaffolds for cell expansion and tissue formation. Int J Artif Organs 37(3):187–205. doi: 10.530/ijao.5000307 PubMedGoogle Scholar
  7. Bradford M (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  8. Brown SD, Podar M, Klingeman DM, Johnson CM, Yang ZK, Utturkar SM, Land ML, Mosher JJ, Hurt RA Jr, Phelps TJ, Palumbo AV, Arkin AP, Hazen TC, Elias DA (2012) Draft genome sequences for two metal-reducing Pelosinus fermentans strains isolated from a Cr(VI)-contaminated site and for type strain R7. J Bacteriol 194(18):5147–5148. doi: 10.1128/jb.01174-12 PubMedCentralCrossRefPubMedGoogle Scholar
  9. Brzozowski AM, Derewenda U, Derewenda ZS, Dodson GG, Lawson DM, Turkenburg JP, Bjorkling F, Huge-Jensen B, Patkar SA, Thim L (1991) A model for interfacial activation in lipases from the structure of a fungal lipase-inhibitor complex. Nature 351(6326):491–494. doi: 10.1038/351491a0 CrossRefPubMedGoogle Scholar
  10. Carrasco-Lopez C, Godoy C, de Las RB, Fernandez-Lorente G, Palomo JM, Guisan JM, Fernandez-Lafuente R, Martinez-Ripoll M, Hermoso JA (2009) Activation of bacterial thermoalkalophilic lipases is spurred by dramatic structural rearrangements. J Biol Chem 284(7):4365–4372. doi: 10.1074/jbc.M808268200 CrossRefPubMedGoogle Scholar
  11. Carta D, Cao G, D’Angeli C (2003) Chemical recycling of poly(ethylene terephthalate) (PET) by hydrolysis and glycolysis. Environ Sci Pollut Res 10(6):390–394CrossRefGoogle Scholar
  12. Chen VB, Arendall WB 3rd, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW, Richardson JS, Richardson DC (2010) MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 66(Pt 1):12–21. doi: 10.1107/s0907444909042073 PubMedCentralCrossRefPubMedGoogle Scholar
  13. Choi WC, Kim MH, Ro HS, Ryu SR, Oh TK, Lee JK (2005) Zinc in lipase L1 from Geobacillus stearothermophilus L1 and structural implications on thermal stability. FEBS Lett 579(16):3461–3466. doi: 10.1016/j.febslet.2005.05.016 CrossRefPubMedGoogle Scholar
  14. Corpet F (1988) Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res 16(22):10881–10890PubMedCentralCrossRefPubMedGoogle Scholar
  15. Delano WL (2005) The PyMOL molecular graphics system. (2002)Google Scholar
  16. Dereeper A, Audic S, Claverie JM, Blanc G (2010) BLAST-EXPLORER helps you building datasets for phylogenetic analysis. BMC Evol Biol 10:8. doi: 10.1186/1471-2148-10-8 PubMedCentralCrossRefPubMedGoogle Scholar
  17. Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard JF, Guindon S, Lefort V, Lescot M, Claverie JM, Gascuel O (2008) Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36(Web Server issue):W465-9 doi: 10.1093/nar/gkn180
  18. Eberl A, Heumann S, Bruckner T, Araujo R, Cavaco-Paulo A, Kaufmann F, Kroutil W, Guebitz GM (2009) Enzymatic surface hydrolysis of poly(ethylene terephthalate) and bis(benzoyloxyethyl) terephthalate by lipase and cutinase in the presence of surface active molecules. J Biotechnol 143(3):207–212. doi: 10.1016/j.jbiotec.2009.07.008 CrossRefPubMedGoogle Scholar
  19. Emsley P, Lohkamp B, Scott WG, Cowtan K (2010) Features and development of coot. Acta Crystallogr Sect-D Biol Crystallogr 66(4):486–501. doi: 10.1107/S0907444910007493 CrossRefGoogle Scholar
  20. Fischer M, Pleiss J (2003) The Lipase Engineering Database: a navigation and analysis tool for protein families. Nucleic Acids Res 31(1):319–321PubMedCentralCrossRefPubMedGoogle Scholar
  21. Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A (2003) ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res 31(13):3784–3788PubMedCentralCrossRefPubMedGoogle Scholar
  22. Gouda MK, Kleeberg I, Van den Heuvel J, Mǜller RJ, Deckwer WD (2002) Production of a polyester degrading extracellular hydrolase from Thermomonospora fusca. BiotechnolProg 18:927–934Google Scholar
  23. Guebitz GM, Cavaco-Paulo A (2008) Enzymes go big: surface hydrolysis and functionalisation of synthetic polymers. Trends Biotechnol 26(1):32–38. doi: 10.1016/j.tibtech.2007.10.003 CrossRefPubMedGoogle Scholar
  24. Heumann S, Eberl A, Fischer-Colbrie G, Pobeheim H, Kaufmann F, Ribitsch D, Cavaco-Paulo A, Guebitz GM (2009) A novel aryl acylamidase from Nocardia farcinica hydrolyses polyamide. Biotechnol Bioeng 102(4):1003–1011. doi: 10.1002/bit.22139 CrossRefPubMedGoogle Scholar
  25. Jeong ST, Kim HK, Kim SJ, Chi SW, Pan JG, Oh TK, Ryu SE (2002) Novel zinc-binding center and a temperature switch in the Bacillus stearothermophilus L1 lipase. J Biol Chem 277(19):17041–17047. doi: 10.1074/jbc.M200640200 CrossRefPubMedGoogle Scholar
  26. Jochens H, Hesseler M, Stiba K, Padhi SK, Kazlauskas RJ, Bornscheuer UT (2011) Protein engineering of alpha/beta-hydrolase fold enzymes. Chembiochem 12(10):1508–1517. doi: 10.1002/cbic.201000771 CrossRefPubMedGoogle Scholar
  27. Kabsch W (2010) XDS. Acta Crystallogr D Biol Crystallogr 66(Pt 2):125–132. doi: 10.1107/s0907444909047337 PubMedCentralCrossRefPubMedGoogle Scholar
  28. Karayannidis GP, Achilias DS (2007) Chemical recycling of poly(ethylene terephthalate). Macromol Mater Eng 292(2):128–146CrossRefGoogle Scholar
  29. Kijchavengkul T, Auras R, Rubino M, Ngouajio M, Fernandez RT (2008) Assessment of aliphatic–aromatic copolyester biodegradable mulch films. Part I: field study. Chemosphere 71(5):942–953. doi: 10.1016/j.chemosphere.2007.10.074 CrossRefPubMedGoogle Scholar
  30. Kijchavengkul T, Auras R, Rubino M, Selke S, Ngouajio M, Fernandez RT (2010) Biodegradation and hydrolysis rate of aliphatic aromatic polyester. Polym Degrad Stab 95(12):2641–2647. doi: 10.1016/j.polymdegradstab.2010.07.018 CrossRefGoogle Scholar
  31. Kim HK, Park SY, Lee JK, Oh TK (1998) Gene cloning and characterization of thermostable lipase from Bacillus stearothermophilus L1. Biosci Biotechnol Biochem 62(1):66–71CrossRefPubMedGoogle Scholar
  32. Kleywegt GJ, Brunger AT (1996) Checking your imagination: applications of the free R value. Structure 4(8):897–904CrossRefPubMedGoogle Scholar
  33. Krissinel E, Henrick K (2007) Inference of macromolecular assemblies from crystalline state. J Mol Biol 372(3):774–797. doi: 10.1016/j.jmb.2007.05.022 CrossRefPubMedGoogle Scholar
  34. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685CrossRefPubMedGoogle Scholar
  35. Lehner R, Verger R (1997) Purification and characterization of a porcine liver microsomal triacylglycerol hydrolase. Biochemistry 36(7):1861–1868. doi: 10.1021/bi962186d CrossRefPubMedGoogle Scholar
  36. Vertommen MAME, van der Veer M, Warmoeskerken MMCG (2005) Enzymatic surface modification of poly(ethylene terephthalate). J Biotechnol 120(4):376–386CrossRefPubMedGoogle Scholar
  37. Mateo C, Grazu V, Pessela BC, Montes T, Palomo JM, Torres R, Lopez-Gallego F, Fernandez-Lafuente R, Guisan JM (2007a) Advances in the design of new epoxy supports for enzyme immobilization-stabilization. Biochem Soc Trans 35(Pt 6):1593–1601. doi: 10.1042/bst0351593 CrossRefPubMedGoogle Scholar
  38. Mateo C, Palomo JM, Fernandez-Lorente G, Guisan JM, Fernandez-Lafuente R (2007b) Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb Technol 40(6):1451–1463. doi: 10.1016/j.enzmictec.2007.01.018 CrossRefGoogle Scholar
  39. Moe WM, Stebbing RE, Rao JU, Bowman KS, Nobre MF, da Costa MS, Rainey FA (2012) Pelosinus defluvii sp. nov., isolated from chlorinated solvent-contaminated groundwater, emended description of the genus Pelosinus and transfer of Sporotalea propionica to Pelosinus propionicus comb. nov. Int J Syst Evol Microbiol 62(Pt 6):1369–1376. doi: 10.1099/ijs.0.033753-0 CrossRefPubMedGoogle Scholar
  40. Murphy CA, Cameron JA, Huang SJ, Vinopal RT (1996) Fusarium polycaprolactone depolymerase is cutinase. Appl Environ Microbiol 62(2):456–460PubMedCentralPubMedGoogle Scholar
  41. Nardini M, Dijkstra BW (1999) Alpha/beta hydrolase fold enzymes: the family keeps growing. Curr Opin Struct Biol 9(6):732–737CrossRefPubMedGoogle Scholar
  42. Pal J, Kankariya N, Sanwaria S, Nandan B, Srivastava RK (2013) Control on molecular weight reduction of poly(epsilon-caprolactone) during melt spinning—a way to produce high strength biodegradable fibers. queryMater Sci Eng C Mater Biol Appl 33(7):4213–4220. doi: 10.1016/j.msec.2013.06.011 CrossRefGoogle Scholar
  43. Pellis A, Acero EH, Weber H, Obersriebnig M, Breinbauer R, Srebotnik E, Guebitz GM (2015) Biocatalyzed approach for the surface functionalization of poly(L-lactic acid) films using hydrolytic enzymes. Biotechnol J. doi: 10.1002/biot.201500074
  44. Ribitsch D, Heumann S, Trotscha E, Herrero Acero E, Greimel K, Leber R, Birner-Gruenberger R, Deller S, Eiteljoerg I, Remler P, Weber T, Siegert P, Maurer KH, Donelli I, Freddi G, Schwab H, Guebitz GM (2011) Hydrolysis of polyethyleneterephthalate by para-nitrobenzylesterase from Bacillus subtilis. Biotechnol Prog 27(4):951–960CrossRefPubMedGoogle Scholar
  45. Sambrook JE, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, vol 2nd ed. Cold Spring Harbor, New YorkGoogle Scholar
  46. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74(12):5463–5467PubMedCentralCrossRefPubMedGoogle Scholar
  47. Shah AA, Eguchi T, Mayumi D, Kato S, Shintani N, Kamini NR, Nakajima-Kambe T (2013a) Degradation of aliphatic and aliphatic-aromatic co-polyesters by depolymerases from Roseateles depolymerans strain TB-87 and analysis of degradation products by LC-MS. Polym Degrad Stab 98(12):2722–2729. doi: 10.1016/j.polymdegradstab.2013.10.003 CrossRefGoogle Scholar
  48. Shah AA, Eguchi T, Mayumi D, Kato S, Shintani N, Kamini NR, Nakajima-Kambe T (2013b) Purification and properties of novel aliphatic-aromatic co-polyesters degrading enzymes from newly isolated Roseateles depolymerans strain TB-87. Polym Degrad Stab 98(2):609–618. doi: 10.1016/j.polymdegradstab.2012.11.013 CrossRefGoogle Scholar
  49. Shah AA, Kato S, Shintani N, Kamini NR, Nakajima-Kambe T (2014) Microbial degradation of aliphatic and aliphatic-aromatic co-polyesters. Appl Microbiol Biotechnol 98(8):3437–3447. doi: 10.1007/s00253-014-5558-1 CrossRefPubMedGoogle Scholar
  50. Sheldon RA (2007) Enzyme immobilization: the quest for optimum performance. Adv Synth Catal 349(8-9):1289–1307. doi: 10.1002/adsc.200700082 CrossRefGoogle Scholar
  51. Shelobolina ES, Nevin KP, Blakeney-Hayward JD, Johnsen CV, Plaia TW, Krader P, Woodard T, Holmes DE, Vanpraagh CG, Lovley DR (2007) Geobacter pickeringii sp. nov., Geobacter argillaceus sp. nov. And Pelosinus fermentans gen. nov., sp. nov., isolated from subsurface kaolin lenses. Int J Syst Evol Microbiol 57(Pt 1):126–135. doi: 10.1099/ijs.0.64221-0 CrossRefPubMedGoogle Scholar
  52. Sterr Y, Weiss A, Schmidt H (2009) Evaluation of lactic acid bacteria for sourdough fermentation of amaranth. Int J Food Microbiol 136(1):75–82. doi: 10.1016/j.ijfoodmicro.2009.09.006 CrossRefPubMedGoogle Scholar
  53. Suzuki K, Noguchi MT, Shinozaki Y, Koitabashi M, Sameshima-Yamashita Y, Yoshida S, Fujii T, Kitamoto HK (2014) Purification, characterization, and cloning of the gene for a biodegradable plastic-degrading enzyme from Paraphoma-related fungal strain B47-9. Appl Microbiol Biotechnol 98(10):4457–4465. doi: 10.1007/s00253-013-5454-0 CrossRefPubMedGoogle Scholar
  54. Verger R (1997) “Interfacial activation” of lipases: facts and artifacts. Trends Biotechnol 15(1):32–38. doi: 10.1016/s0167-7799(96)10064-0 CrossRefGoogle Scholar
  55. Vijayendra SV, Shamala TR (2014) Film forming microbial biopolymers for commercial applications—a review. Crit Rev Biotechnol 34(4):338–357. doi: 10.3109/07388551.2013.798254 CrossRefPubMedGoogle Scholar
  56. Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, Evans PR, Keegan RM, Krissinel EB, Leslie AG, McCoy A, McNicholas SJ, Murshudov GN, Pannu NS, Potterton EA, Powell HR, Read RJ, Vagin A, Wilson KS (2011) Overview of the CCP4 suite and current developments. Acta Crystallogr D Biol Crystallogr 67(Pt 4):235–242. doi: 10.1107/s0907444910045749 PubMedCentralCrossRefPubMedGoogle Scholar
  57. Witt U, Einig T, Yamamoto M, Kleeberg I, Deckwer WD, Müller RJ (2001) Biodegradation of aliphatic–aromatic copolyesters: evaluation of the final biodegradability and ecotoxicological impact of degradation intermediates. Chemosphere 44(2):289–299. doi: 10.1016/S0045-6535(00)00162-4 CrossRefPubMedGoogle Scholar
  58. Witt U, Müller R-J, Deckwer W-D (1995) New biodegradable polyester-copolymers from commodity chemicals with favorable use properties. J Environ Polym Degrad 3(4):215–223. doi: 10.1007/BF02068676 CrossRefGoogle Scholar
  59. Wong H, Schotz MC (2002) The lipase gene family. J Lipid Res 43(7):993–999CrossRefPubMedGoogle Scholar
  60. Yang S, Xu H, Yan Q, Liu Y, Zhou P, Jiang Z (2013) A low molecular mass cutinase of Thielavia terrestris efficiently hydrolyzes poly(esters). J Ind Microbiol Biotechnol 40(2):217–226. doi: 10.1007/s10295-012-1222-x CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Antonino Biundo
    • 1
  • Altijana Hromic
    • 2
    • 3
  • Tea Pavkov-Keller
    • 2
    • 3
  • Karl Gruber
    • 2
    • 3
  • Felice Quartinello
    • 1
  • Karolina Haernvall
    • 4
  • Veronika Perz
    • 4
  • Miriam S. Arrell
    • 5
  • Manfred Zinn
    • 5
  • Doris Ribitsch
    • 1
    • 4
  • Georg M. Guebitz
    • 1
    • 4
  1. 1.Institute of Environmental BiotechnologyUniversity of Natural Resources and Life Science (BOKU)Tulln an der DonauAustria
  2. 2.Austrian Centre for Industrial Biotechnology (ACIB)GrazAustria
  3. 3.Institute of Molecular BioscienceUniversity of GrazGrazAustria
  4. 4.Austrian Centre for Industrial Biotechnology (ACIB)Tulln an der DonauAustria
  5. 5.Institute of Life Technologies, University of Applied Sciences Western Switzerland (HES-SO Valais/Wallis)SionSwitzerland

Personalised recommendations