Advertisement

Applied Microbiology and Biotechnology

, Volume 100, Issue 4, pp 1823–1831 | Cite as

Deletion of a gene cluster for [Ni-Fe] hydrogenase maturation in the anaerobic hyperthermophilic bacterium Caldicellulosiruptor bescii identifies its role in hydrogen metabolism

  • Minseok Cha
  • Daehwan Chung
  • Janet Westpheling
Applied genetics and molecular biotechnology

Abstract

The anaerobic, hyperthermophlic, cellulolytic bacterium Caldicellulosiruptor bescii grows optimally at ∼80 °C and effectively degrades plant biomass without conventional pretreatment. It utilizes a variety of carbohydrate carbon sources, including both C5 and C6 sugars, released from plant biomass and produces lactate, acetate, CO2, and H2 as primary fermentation products. The C. bescii genome encodes two hydrogenases, a bifurcating [Fe-Fe] hydrogenase and a [Ni-Fe] hydrogenase. The [Ni-Fe] hydrogenase is the most widely distributed in nature and is predicted to catalyze hydrogen production and to pump protons across the cellular membrane creating proton motive force. Hydrogenases are the key enzymes in hydrogen metabolism and their crystal structure reveals complexity in the organization of their prosthetic groups suggesting extensive maturation of the primary protein. Here, we report the deletion of a cluster of genes, hypABFCDE, required for maturation of the [Ni-Fe] hydrogenase. These proteins are specific for the hydrogenases they modify and are required for hydrogenase activity. The deletion strain grew more slowly than the wild type or the parent strain and produced slightly less hydrogen overall, but more hydrogen per mole of cellobiose. Acetate yield per mole of cellobiose was increased ∼67 % and ethanol yield per mole of cellobiose was decreased ∼39 %. These data suggest that the primary role of the [Ni-Fe] hydrogenase is to generate a proton gradient in the membrane driving ATP synthesis and is not the primary enzyme for hydrogen catalysis. In its absence, ATP is generated from increased acetate production resulting in more hydrogen produced per mole of cellobiose.

Keywords

Anaerobe Hyperthermophile Caldicellulosiruptor bescii Hydrogen Bifurcating [Fe-Fe] hydrogenase [Ni-Fe] hydrogenase Hydrogenase maturation proteins 

Notes

Acknowledgments

We thank Jennifer Copeland and Elise Snyder for the outstanding technical assistance, Brian Davison for providing the switchgrass used in this study, Sidney Kushner for the expert technical advice, William Whitman for the advice and use of his GC, Joe Groom and Jenna Young for the critical review of the manuscript. The BioEnergy Science Center is a U.S. Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

253_2015_7025_MOESM1_ESM.pdf (356 kb)
ESM 1 (PDF 356 kb)

References

  1. Cammack R (1999) Hydrogenase sophistication. Nature 397(6716):214–215. doi: 10.1038/16601 CrossRefPubMedGoogle Scholar
  2. Carere CR, Rydzak T, Verbeke TJ, Cicek N, Levin DB, Sparling R (2012) Linking genome content to biofuel production yields: a meta-analysis of major catabolic pathways among select H2 and ethanol-producing bacteria. BMC Microbiol 12:295. doi: 10.1186/1471-2180-12-295 PubMedCentralCrossRefPubMedGoogle Scholar
  3. Casalot L, Rousset M (2001) Maturation of the [NiFe] hydrogenases. Trends Microbiol 9:228–237CrossRefPubMedGoogle Scholar
  4. Cha M, Chung D, Elkins JG, Guss AM, Westpheling J (2013) Metabolic engineering of Caldicellulosiruptor bescii yields increased hydrogen production from lignocellulosic biomass. Biotechnol Biofuels 6(1):85. doi: 10.1186/1754-6834-6-85 PubMedCentralCrossRefPubMedGoogle Scholar
  5. Chou CJ, Jenney Jr FE, Adams MW, Kelly RM (2008) Hydrogenesis in hyperthermophilic microorganisms: implications for biofuels. Metab Eng 10(6):394–404. doi: 10.1016/j.ymben.2008.06.007
  6. Chung D, Cha M, Farkas J, Westpheling J (2013a) Construction of a stable replicating shuttle vector for Caldicellulosiruptor species: use for extending genetic methodologies to other members of this genus. PLoS One 8(5):e62881. doi: 10.1371/journal.pone.0062881 PubMedCentralCrossRefPubMedGoogle Scholar
  7. Chung D, Cha M, Guss AM, Westpheling J (2014) Direct conversion of plant biomass to ethanol by engineered Caldicellulosiruptor bescii. Proc Natl Acad Sci U S A 111(24):8931–8936. doi: 10.1073/pnas.1402210111 PubMedCentralCrossRefPubMedGoogle Scholar
  8. Chung D, Farkas J, Huddleston JR, Olivar E, Westpheling J (2012) Methylation by a unique alpha-class N4-cytosine methyltransferase is required for DNA transformation of Caldicellulosiruptor bescii DSM6725. PLoS One 7(8):e43844. doi: 10.1371/journal.pone.0043844 PubMedCentralCrossRefPubMedGoogle Scholar
  9. Chung D, Farkas J, Westpheling J (2013b) Overcoming restriction as a barrier to DNA transformation in Caldicellulosiruptor species results in efficient marker replacement. Biotechnol Biofuels 6(1):82. doi: 10.1186/1754-6834-6-82 PubMedCentralCrossRefPubMedGoogle Scholar
  10. Das D, Dutta T, Nath K, Kotya SM, Das AK, Veziroglu TN (2006) Role of hydrogenase in biological hydrogen production. Curr Sci 90(12):1627–1637Google Scholar
  11. de Vrije T, Mars AE, Budde MA, Lai MH, Dijkema C, de Waard P, Claassen PA (2007) Glycolytic pathway and hydrogen yield studies of the extreme thermophile Caldicellulosiruptor saccharolyticus. Appl Microbiol Biotechnol 74(6):1358–1367. doi: 10.1007/s00253-006-0783-x CrossRefPubMedGoogle Scholar
  12. Farkas J, Chung D, Cha M, Copeland J, Grayeski P, Westpheling J (2013) Improved growth media and culture techniques for genetic analysis and assessment of biomass utilization by Caldicellulosiruptor bescii. J Ind Microbiol Biotechnol 40(1):41–49. doi: 10.1007/s10295-012-1202-1 PubMedCentralCrossRefPubMedGoogle Scholar
  13. Green MR, Sambrook J, Sambrook J (2012) Molecular cloning : a laboratory manual, 4th edn. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  14. Kadar Z, de Vrije T, van Noorden GE, Budde MA, Szengyel Z, Reczey K, Claassen PA (2004) Yields from glucose, xylose, and paper sludge hydrolysate during hydrogen production by the extreme thermophile Caldicellulosiruptor saccharolyticus. Appl Biochem Biotechnol 113-116:497–508CrossRefPubMedGoogle Scholar
  15. Kanai T, Imanaka H, Nakajima A, Uwamori K, Omori Y, Fukui T, Atomi H, Imanaka T (2005) Continuous hydrogen production by the hyperthermophilic archaeon, Thermococcus kodakaraensis KOD1. J Biotechnol 116(3):271–282. doi: 10.1016/j.jbiotec.2004.11.002 CrossRefPubMedGoogle Scholar
  16. Schicho RN, Ma K, Adams MW, Kelly RM (1993) Bioenergetics of sulfur reduction in the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol 175(6):1823–1830PubMedCentralPubMedGoogle Scholar
  17. Schuchmann K, Muller V (2012) A bacterial electron-bifurcating hydrogenase. J Biol Chem 287(37):31165–31171. doi: 10.1074/jbc.M112.395038 PubMedCentralCrossRefPubMedGoogle Scholar
  18. Schut GJ, Adams MW (2009) The iron-hydrogenase of Thermotoga maritima utilizes ferredoxin and NADH synergistically: a new perspective on anaerobic hydrogen production. J Bacteriol 191(13):4451–4457. doi: 10.1128/JB.01582-08 PubMedCentralCrossRefPubMedGoogle Scholar
  19. van de Werken HJ, Verhaart MR, VanFossen AL, Willquist K, Lewis DL, Nichols JD, Goorissen HP, Mongodin EF, Nelson KE, Van Niel EW, Stams AJ, Ward DE, de Vos WM, van der Oost J, Kelly RM, Kengen SW (2008) Hydrogenomics of the extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus. Appl Environ Microbiol 74(21):6720–6729. doi: 10.1128/AEM.00968-08 PubMedCentralCrossRefPubMedGoogle Scholar
  20. Vignais PM, Colbeau A (2004) Molecular biology of microbial hydrogenases. Curr Issues Mol Biol 6:159–188PubMedGoogle Scholar
  21. White D (2007) The physiology and biochemistry of prokaryotes, 3rd edn. Oxford University Press, New YorkGoogle Scholar
  22. Willquist K, Zeidan AA, van Niel EW (2010) Physiological characteristics of the extreme thermophile Caldicellulosiruptor saccharolyticus: an efficient hydrogen cell factory. Microb Cell Factories 9:89. doi: 10.1186/1475-2859-9-89 CrossRefGoogle Scholar
  23. Yang SJ, Kataeva I, Hamilton-Brehm SD, Engle NL, Tschaplinske TJ, Doeppke C, Davis M, Wespheling J, Adams MW (2009) Efficient degradation of lignocellulosic plant biomass, without pretreatment, by the thermophilic anaerobe “Anaerocellum thermophilum” DSM 6725. Appl Environ Microbiol 75(14):4762–4769. doi: 10.1128/AEM.00236-09 PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Minseok Cha
    • 1
    • 2
  • Daehwan Chung
    • 1
    • 2
  • Janet Westpheling
    • 1
    • 2
  1. 1.Department of GeneticsUniversity of GeorgiaAthensUSA
  2. 2.The BioEnergy Science CenterOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations