Advertisement

Applied Microbiology and Biotechnology

, Volume 100, Issue 2, pp 697–706 | Cite as

Characterization of a new aryl-alcohol oxidase secreted by the phytopathogenic fungus Ustilago maydis

  • Marie Couturier
  • Yann Mathieu
  • Ai Li
  • David Navarro
  • Elodie Drula
  • Mireille Haon
  • Sacha Grisel
  • Roland Ludwig
  • Jean-Guy Berrin
Biotechnologically relevant enzymes and proteins

Abstract

The discovery of novel fungal lignocellulolytic enzymes is essential to improve the breakdown of plant biomass for the production of second-generation biofuels or biobased materials in green biorefineries. We previously reported that Ustilago maydis grown on maize secreted a diverse set of lignocellulose-acting enzymes including hemicellulases and putative oxidoreductases. One of the most abundant proteins of the secretome was a putative glucose-methanol-choline (GMC) oxidoreductase. The phylogenetic prediction of its function was hampered by the few characterized members within its clade. Therefore, we cloned the gene and produced the recombinant protein to high yield in Pichia pastoris. Functional screening using a library of substrates revealed that this enzyme was able to oxidize several aromatic alcohols. Of the tested aryl-alcohols, the highest oxidation rate was obtained with 4-anisyl alcohol. Oxygen, 1,4-benzoquinone, and 2,6-dichloroindophenol can serve as electron acceptors. This GMC oxidoreductase displays the characteristics of an aryl-alcohol oxidase (E.C.1.1.3.7), which is suggested to act on the lignin fraction in biomass.

Keywords

Aryl-alcohol oxidase Ustilago maydis CAZy AA3 Lignin Biorefinery 

Notes

Acknowledgments

The authors are grateful to C. Olivé for the technical assistance and to P.M. Coutinho for the fruitful discussions.

Compliance with ethical standards

This article does not contain any studies with animals performed by any of the authors. All authors have read and approved the final manuscript.

Conflicts of interest

The authors declare that they have no competing interests.

Funding

This study was funded by the French National Research Agency (FUNLOCK project ANR-13-BIME-0002-01), the AMIDEX foundation (Funcopper project A*M-AAP-EI-13-13-130115-15.37), and the INDOX European project (FP7-KBBE-2013-7-613549).

References

  1. Berrin JG, Navarro D, Couturier M, Olivé C, Grisel S, Haon M, Taussac S, Lechat C, Courtecuisse R, Favel A, Coutinho PM, Lesage-Meessen L (2012) Exploring the natural fungal biodiversity of tropical and temperate forests toward improvement of biomass conversion. Appl Environ Microbiol 78(18):6483–6490. doi: 10.1128/AEM.01651-12 PubMedPubMedCentralCrossRefGoogle Scholar
  2. Chundawat SP, Beckham GT, Himmel ME, Dale BE (2011) Deconstruction of lignocellulosic biomass to fuels and chemicals. Annu Rev Chem Biomol Eng 2:121–145. doi: 10.1146/annurev-chembioeng-061010-114205 PubMedCrossRefGoogle Scholar
  3. Couturier M, Haon M, Coutinho PM, Henrissat B, Lesage-Meessen L, Berrin JG (2011) Podospora anserina hemicellulases potentiate the Trichoderma reesei secretome for saccharification of lignocellulosic biomass. Appl Environ Microbiol 77:237–246. doi: 10.1128/AEM.01761-10 PubMedPubMedCentralCrossRefGoogle Scholar
  4. Couturier M, Navarro D, Olivé C, Chevret D, Haon M, Favel A, Lesage-Meessen L, Henrissat B, Coutinho PM, Berrin JG (2012) Post-genomic analyses of fungal lignocellulosic biomass degradation reveal the unexpected potential of the plant pathogen Ustilago maydis. BMC Genomics 13:57. doi: 10.1186/1471-2164-13-57 PubMedPubMedCentralCrossRefGoogle Scholar
  5. Daniel G, Volc J, Kubatova E (1994) Pyranose oxidase, a major source of H(2)O(2) during wood degradation by Phanerochaete chrysosporium, Trametes versicolor, and Oudemansiella mucida. Appl Environ Microbiol 60(7):2524–2532PubMedPubMedCentralGoogle Scholar
  6. Ferreira P, Hernandez-Ortega A, Herguedas B, Martinez AT, Medina M (2009) Aryl-alcohol oxidase involved in lignin degradation—a mechanistic study based on steady and pre-steady state kinetics and primary and solvent isotope effects with two alcohol substrates. J Biol Chem 284:24840–24847. doi: 10.1074/jbc.M109.011593 PubMedPubMedCentralCrossRefGoogle Scholar
  7. Ferreira P, Ruiz-Dueñas FJ, Martínez MJ, van Berkel WJ, Martínez AT (2006) Site-directed mutagenesis of selected residues at the active site of aryl-alcohol oxidase, an H2O2-producing ligninolytic enzyme. Febs j 273(21):4878–4888. doi: 10.1111/j.1742-4658.2006.05488.x PubMedCrossRefGoogle Scholar
  8. Ferreira P, Medina M, Guillén F, Martinez MJ, Van Berkel WJ, Martinez AT (2005) Spectral and catalytic properties of aryl-alcohol oxidase, a fungal flavoenzyme acting on polyunsaturated alcohols. Biochem J 389:731–738. doi: 10.1042/BJ20041903 PubMedPubMedCentralCrossRefGoogle Scholar
  9. Foust TD, Ibsen KN, Dayton DC, Hess JR, Kenney KE (2008) The biorefinery. In: Himmel ME (ed) Biomass recalcitrance: deconstructing the plant cell wall for bioenergy, 1st edn. Blackwell Publishing Ltd, Oxford, UK, pp. 7–37CrossRefGoogle Scholar
  10. Gibson DM, King BC, Hayes ML, Bergstrom GC (2011) Plant pathogens as a source of diverse enzymes for lignocellulose digestion. Curr Opin Microbiol 14(3):264–270. doi: 10.1016/j.mib.2011.04.002 PubMedCrossRefGoogle Scholar
  11. Guillén F, Martinez AT, Martínez MJ (1990) Production of hydrogen peroxide by aryl-alcohol oxidase from the ligninolytic fungus Pleurotus eryngii. Appl Microbiol Biotechnol 32(4):465–469. doi: 10.1111/j.1432-1033.1992.tb17326.x CrossRefGoogle Scholar
  12. Guillén F, Martinez AT, Martinez MJ (1992) Substrate specificity and properties of the aryl-alcohol oxidase from the ligninolytic fungus Pleurotus eryngii. J Biochem 209(2):603–611. doi: 10.1111/j.1432-1033.1992.tb17326.x Google Scholar
  13. Hernandez-Ortega A, Ferreira P, Martinez AT (2012) Fungal aryl-alcohol oxidase: a peroxide-producing flavoenzyme involved in lignin degradation. Appl Microbiol Biotechnol 93:1395–1410. doi: 10.1007/s00253-011-3836-8 PubMedCrossRefGoogle Scholar
  14. Kämper J, Kahmann R, Bölker M, Ma LJ, Brefort T, Saville BJ, Banuett F, Kronstad JW, Gold SE, Müller O, Perlin MH, Wösten HA, de Vries R, Ruiz-Herrera J, Reynaga-Peña CG, Snetselaar K, McCann M, Pérez-Martín J, Feldbrügge M, Basse CW, Steinberg G, Ibeas JI, Holloman W, Guzman P, Farman M, Stajich JE, Sentandreu R, González-Prieto JM, Kennell JC, Molina L, Schirawski J, Mendoza-Mendoza A, Greilinger D, Münch K, Rössel N, Scherer M, Vranes M, Ladendorf O, Vincon V, Fuchs U, Sandrock B, Meng S, Ho EC, Cahill MJ, Boyce KJ, Klose J, Klosterman SJ, Deelstra HJ, Ortiz-Castellanos L, Li W, Sanchez-Alonso P, Schreier PH, Häuser-Hahn I, Vaupel M, Koopmann E, Friedrich G, Voss H, Schlüter T, Margolis J, Platt D, Swimmer C, Gnirke A, Chen F, Vysotskaia V, Mannhaupt G, Güldener U, Münsterkötter M, Haase D, Oesterheld M, Mewes HW, Mauceli EW, DeCaprio D, Wade CM, Butler J, Young S, Jaffe DB, Calvo S, Nusbaum C, Galagan J, Birren BW (2006) Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis. Nature 444(7115):97–101PubMedCrossRefGoogle Scholar
  15. Kersten PJ, Kirk TK (1987) Involvement of a new enzyme, glyoxal oxidase, in extracellular H2O2 production by Phanerochaete chrysosporium. J Bacteriol 169(5):2195–2201PubMedPubMedCentralGoogle Scholar
  16. King BC, Waxman KD, Nenni NV, Walker LP, Bergstrom GC, Gibson DM (2011) Arsenal of plant cell wall degrading enzymes reflects host preference among plant pathogenic fungi. Biotechnol Biofuels 16(4):4. doi: 10.1186/1754-6834-4-4 CrossRefGoogle Scholar
  17. Leitner C, Volc J, Haltrich D (2001) Purification and characterization of pyranose oxidase from the white rot fungus Trametes multicolor. Appl Environ Microbiol 67(8):3636–3644. doi: 10.1128/AEM.67.8.3636-3644 PubMedPubMedCentralCrossRefGoogle Scholar
  18. Leuthner B, Aichinger C, Oehmen E, Koopmann E, Müller O, Müller P, Kahmann R, Bölker M, Schreier PH (2005) A H2O2-producing glyoxal oxidase is required for filamentous growth and pathogenicity in Ustilago maydis. Mol Gen Genomics 272(6):639–650. doi: 10.1007/s00438-004-1085-6 CrossRefGoogle Scholar
  19. Levasseur A, Drula E, Lombard V, Coutinho PM, Henrissat B (2013) Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. Biotechnol Biofuels 6(1):41. doi: 10.1186/1754-6834-6-41 PubMedPubMedCentralCrossRefGoogle Scholar
  20. Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42:D490–D495. doi: 10.1093/nar/gkt1178 PubMedPubMedCentralCrossRefGoogle Scholar
  21. Lundell TK, Mäkelä MR, Hildén K (2010) Lignin-modifying enzymes in filamentous basidiomycetes—ecological, functional and phylogenetic review. J Basic Microbiol 50(1):5–20. doi: 10.1002/jobm.200900338 PubMedCrossRefGoogle Scholar
  22. Martinez D, Berka RM, Henrissat B, Saloheimo M, Arvas M, Baker SE, Chapman J, Chertkov O, Coutinho PM, Cullen D, Danchin EG, Grigoriev IV, Harris P, Jackson M, Kubicek CP, Han CS, Ho I, Larrondo LF, de Leon AL, Magnuson JK, Merino S, Misra M, Nelson B, Putnam N, Robbertse B, Salamov AA, Schmoll M, Terry A, Thayer N, Westerholm-Parvinen A, Schoch CL, Yao J, Barabote R, Nelson MA, Detter C, Bruce D, Kuske CR, Xie G, Richardson P, Rokhsar DS, Lucas SM, Rubin EM, Dunn-Coleman N, Ward M, Brettin TS (2008) Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat Biotechnol 26(5):553–560. doi: 10.1038/nbt1403 PubMedCrossRefGoogle Scholar
  23. Martinez D, Challacombe J, Morgenstern I, Hibbett D, Schmoll M, Kubicek CP, Ferreira P, Ruiz-Duenas FJ, Martinez AT, Kersten P, Hammel KE, Vanden Wymelenberg A, Gaskell J, Lindquist E, Sabat G, Bondurant SS, Larrondo LF, Canessa P, Vicuna R, Yadav J, Doddapaneni H, Subramanian V, Pisabarro AG, Lavín JL, Oguiza JA, Master E, Henrissat B, Coutinho PM, Harris P, Magnuson JK, Baker SE, Bruno K, Kenealy W, Hoegger PJ, Kües U, Ramaiya P, Lucas S, Salamov A, Shapiro H, Tu H, Chee CL, Misra M, Xie G, Teter S, Yaver D, James T, Mokrejs M, Pospisek M, Grigoriev IV, Brettin T, Rokhsar D, Berka R, Cullen D (2009) Genome, transcriptome, and secretome analysis of wood decay fungus Postia placenta supports unique mechanisms of lignocellulose conversion. Proc Natl Acad Sci U S A 106(6):1954–1959. doi: 10.1073/pnas.0809575106 PubMedPubMedCentralCrossRefGoogle Scholar
  24. Mueller O, Kahmann R, Aguilar G, Trejo-Aguilar B, Wu A, de Vries RP (2008) The secretome of the maize pathogen Ustilago maydis. Fungal Genet Biol 45(Suppl 1):S63–S70. doi: 10.1016/j.fgb.2008.03.012 PubMedCrossRefGoogle Scholar
  25. Okamoto K, Yanase H (2002) Aryl alcohol oxidases from the white-rot basidiomycete Pleurotus ostreatus. Mycoscience 43:391–395. doi: 10.1007/S102670200057 CrossRefGoogle Scholar
  26. Peterson R, Nevalainen H (2012) Trichoderma reesei RUT-C30—thirty years of strain improvement. Microbiology 158:58–68. doi: 10.1099/mic.0.054031-0 PubMedCrossRefGoogle Scholar
  27. Ravalason H, Grisel S, Chevret D, Favel A, Berrin JG, Sigoillot JC, Herpoël-Gimbert I (2012) Fusarium verticillioides secretome as a source of auxiliary enzymes to enhance saccharification of wheat straw. Bioresour Technol 114:589–596. doi: 10.1016/j.biortech.2012.03.009 PubMedCrossRefGoogle Scholar
  28. Romero E, Ferreira P, Martínez AT, Martínez MJ (2009) New oxidase from Bjerkandera arthroconidial anamorph that oxidizes both phenolic and nonphenolic benzyl alcohols. BBA - Proteins Proteom 1794(4):689–697. doi: 10.1016/j.bbapap.2008.11.013 CrossRefGoogle Scholar
  29. Siguier B, Haon M, Nahoum V, Marcellin M, Burlet-Schiltz O, Coutinho PM, Henrissat B, Mourey L, O’Donohue MJ, Berrin JG, Tranier S, Dumon C (2014) First structural insights into α-L-arabinofuranosidases from the two GH62 glycoside hydrolase subfamilies. J Biol Chem 289(8):5261–5273. doi: 10.1074/jbc.M113.528133 PubMedPubMedCentralCrossRefGoogle Scholar
  30. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729. doi: 10.1093/molbev/mst197 PubMedPubMedCentralCrossRefGoogle Scholar
  31. Varela E, Böckle B, Romero A, Martínez AT, Martínez MJ (2000) Biochemical characterization, cDNA cloning and protein crystallization of aryl-alcohol oxidase from Pleurotus pulmonarius. Biochim Biophys Acta 1476(1):129–138. doi: 10.1016/S0167-4838(99)00227-7 PubMedCrossRefGoogle Scholar
  32. Zhang Y (2008) I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 9(1):40. doi: 10.1186/1471-2105-9-40 PubMedPubMedCentralCrossRefGoogle Scholar
  33. Zuckerkandl E, Pauling L (1965) Evolutionary divergence and convergence in proteins. In: Bryson V, Vogel HJ (eds) Evolving genes and proteins. Academic Press, New York, pp. 97–166Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Marie Couturier
    • 1
    • 2
  • Yann Mathieu
    • 1
    • 2
  • Ai Li
    • 3
  • David Navarro
    • 1
    • 2
  • Elodie Drula
    • 1
    • 2
    • 4
    • 5
  • Mireille Haon
    • 1
    • 2
  • Sacha Grisel
    • 1
    • 2
  • Roland Ludwig
    • 3
  • Jean-Guy Berrin
    • 1
    • 2
    • 6
  1. 1.INRA, UMR1163 BBF, Polytech’MarseilleMarseilleFrance
  2. 2.Marseille Université, UMR1163 BBF, Polytech’MarseilleMarseilleFrance
  3. 3.Department of Food Science and TechnologyUniversity of Natural Resources and Life SciencesViennaAustria
  4. 4.CNRS, UMR7257 Architecture et Fonction des Macromolécules BiologiquesMarseilleFrance
  5. 5.INRA, USC1408 Architecture et Fonction des Macromolécules BiologiquesMarseilleFrance
  6. 6.INRA, Laboratoire de Biodiversité et Biotechnologie FongiqueMarseilleFrance

Personalised recommendations