Applied Microbiology and Biotechnology

, Volume 100, Issue 2, pp 939–948 | Cite as

Biogas desulfurization using autotrophic denitrification process

Environmental biotechnology

Abstract

The aim of this study was to evaluate the performance of an autotrophic denitrification process for desulfurization of biogas produced from a chicken manure digester. A laboratory scale upflow fixed bed reactor (UFBR) was operated for 105 days and fed with sodium sulfide or H2S scrubbed from the biogas and nitrate as electron donor and acceptor, respectively. The S/N ratio (2.5 mol/mol) of the feed solution was kept constant throughout the study. When the UFBR was fed with sodium sulfide solution with an influent pH of 7.7, about 95 % sulfide and 90 % nitrate removal efficiencies were achieved. However, the inlet of the UFBR was clogged several times due to the accumulation of biologically produced elemental sulfur particles and the clogging resulted in operational problems. When the UFBR was fed with the H2S absorbed from the biogas and operated with an influent pH of 8–9, around 98 % sulfide and 97 % nitrate removal efficiencies were obtained. In this way, above 95 % of the H2S in the biogas was removed as elemental sulfur and the reactor effluent was reused as scrubbing liquid without any clogging problem.

Keywords

Clogging Elemental sulfur Nitrate Scrubbing Sulfide oxidation 

References

  1. APHA (2005) Standard methods for the examination of water and wastewater. APHA-AWWA-WEF, Washington, D.C.Google Scholar
  2. Baciocchi R, Carnevale E, Corti A, Costa G, Lombardi L, Olivieri T, Zanchi L, Zingaretti D (2013) Innovative process for biogas upgrading with CO2 storage: results from pilot plant operation. Biomass Bioenergy 53(0):128–137. doi:10.1016/j.biombioe.2012.11.016 CrossRefGoogle Scholar
  3. Baspinar AB, Turker M, Hocalar A, Ozturk I (2011) Biogas desulphurization at technical scale by lithotrophic denitrification: integration of sulphide and nitrogen removal. Process Biochem 46(4):916–922. doi:10.1016/j.procbio.2011.01.001 CrossRefGoogle Scholar
  4. Bosch PLF, Beusekom OC, Buisman CJN, Janssen AJH (2007) Sulfide oxidation at halo-alkaline conditions in a fed-batch bioreactor. Biotechnol Bioeng 97(5):1053–1063PubMedCrossRefGoogle Scholar
  5. Cai J, Zheng P, Mahmood Q (2008) Effect of sulfide to nitrate ratios on the simultaneous anaerobic sulfide and nitrate removal. Bioresour Technol 99(13):5520–5527. doi:10.1016/j.biortech.2007.10.053 PubMedCrossRefGoogle Scholar
  6. Chen L, Huang J, Yang C-L (2001) Absorption of H2S in NaOCl caustic aqueous solution. Environ Prog 20(3):175–181. doi:10.1002/ep.670200313 CrossRefGoogle Scholar
  7. Chen Y, Fan Z, Ma L, Yin J, Luo M, Cai W (2014) Performance of three pilot-scale immobilized-cell biotrickling filters for removal of hydrogen sulfide from a contaminated air steam. Saudi J Biol Sci (0) doi:10.1016/j.sjbs.2014.05.008
  8. Cirne DG, Van Der Zee FP, Fernandez-Polanco M, Fernandez-Polanco F (2008) Control of sulphide during anaerobic treatment of S-containing wastewaters by adding limited amounts of oxygen or nitrate. Rev Environ Sci Biotechnology 7(2):93–105CrossRefGoogle Scholar
  9. Cord-Ruwisch R (1985) A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfate-reducing bacteria. J Microbiol Methods 4(1):33–36. doi:10.1016/0167-7012(85)90005-3 CrossRefGoogle Scholar
  10. Deublein D, Steinhauser A (2011) Biogas from waste and renewable resources: an introduction. John Wiley & SonsGoogle Scholar
  11. Díaz I, Lopes AC, Pérez SI, Fdz-Polanco M (2010) Performance evaluation of oxygen, air and nitrate for the microaerobic removal of hydrogen sulphide in biogas from sludge digestion. Bioresour Technol 101(20):7724–7730. doi:10.1016/j.biortech.2010.04.062 PubMedCrossRefGoogle Scholar
  12. Dinamarca C (2014) Anaerobic expanded granular sludge bed (EGSB) reactor for the removal of sulphide by autotrophic denitrification. Journal Homepage: www IJEE IEEFoundation org 5(1):111–118Google Scholar
  13. Dolejs P, Paclík L, Maca J, Pokorna D, Zabranska J, Bartacek J (2014) Effect of S/N ratio on sulfide removal by autotrophic denitrification. Appl Microbiol Biotechnol: 1-10Google Scholar
  14. Fernández-Rodríguez J, Pérez M, Romero L (2015) Temperature-phased anaerobic digestion of industrial organic fraction of municipal solid waste: a batch study. Chem Eng J 270:597–604CrossRefGoogle Scholar
  15. Fernández M, Ramírez M, Gómez JM, Cantero D (2014) Biogas biodesulfurization in an anoxic biotrickling filter packed with open-pore polyurethane foam. J Hazard Mater 264(0):529–535. doi:10.1016/j.jhazmat.2013.10.046 PubMedCrossRefGoogle Scholar
  16. Fernández N, Sierra-Alvarez R, Field JA, Amils R, Sanz JL (2008) Microbial community dynamics in a chemolithotrophic denitrification reactor inoculated with methanogenic granular sludge. Chemosphere 70(3):462–474. doi:10.1016/j.chemosphere.2007.06.062 PubMedCrossRefGoogle Scholar
  17. Findlay AJ, Gartman A, MacDonald DJ, Hanson TE, Shaw TJ, Luther GW (2014) Distribution and size fractionation of elemental sulfur in aqueous environments: the Chesapeake Bay and Mid-Atlantic Ridge. Geochim Cosmochim Acta (0) doi:10.1016/j.gca.2014.07.032
  18. Fonoll X, Astals S, Dosta J, Mata-Alvarez J (2015) Anaerobic co-digestion of sewage sludge and fruit wastes: evaluation of the transitory states when the co-substrate is changed. Chem Eng J 262:1268–1274CrossRefGoogle Scholar
  19. Fortuny M, Baeza JA, Gamisans X, Casas C, Lafuente J, Deshusses MA, Gabriel D (2008) Biological sweetening of energy gases mimics in biotrickling filters. Chemosphere 71(1):10–17. doi:10.1016/j.chemosphere.2007.10.072 PubMedCrossRefGoogle Scholar
  20. Guerrero RB, Bevilaqua D (2015) Biotrickling filtration of biogas produced from the wastewater treatment plant of a brewery. J Environ EngGoogle Scholar
  21. Kleinjan WE, de Keizer A, Janssen AJH (2005) Kinetics of the reaction between dissolved sodium sulfide and biologically produced sulfur. Ind Eng Chem Res 44(2):309–317. doi:10.1021/ie049579q CrossRefGoogle Scholar
  22. Ko JH, Xu Q, Jang Y-C (2015) Emissions and control of hydrogen sulfide at landfills: a review. Critical Reviews in Environmental Science and Technology (just-accepted):00–00Google Scholar
  23. Krischan J, Makaruk A, Harasek M (2012) Design and scale-up of an oxidative scrubbing process for the selective removal of hydrogen sulfide from biogas. J Hazard Mater 215–216(0):49–56. doi:10.1016/j.jhazmat.2012.02.028 PubMedCrossRefGoogle Scholar
  24. Lee K-C, Rittmann BE (2003) Effects of pH and precipitation on autohydrogenotrophic denitrification using the hollow-fiber membrane-biofilm reactor. Water Res 37(7):1551–1556. doi:10.1016/S0043-1354(02)00519-5 PubMedCrossRefGoogle Scholar
  25. López ME, Rene ER, Veiga MC, Kennes C (2012) Biogas technologies and cleaning techniques environmental chemistry for a sustainable world. Springer, pp 347-377Google Scholar
  26. Mahmood Q, Zheng P, Hayat Y, Islam E, Wu D, Ren-cun J (2008) Effect of pH on anoxic sulfide oxidizing reactor performance. Bioresour Technol 99(8):3291–3296. doi:10.1016/j.biortech.2007.07.006 PubMedCrossRefGoogle Scholar
  27. Montebello AM, Fernández M, Almenglo F, Ramírez M, Cantero D, Baeza M, Gabriel D (2012) Simultaneous methylmercaptan and hydrogen sulfide removal in the desulfurization of biogas in aerobic and anoxic biotrickling filters. Chem Eng J 200–202(0):237–246. doi:10.1016/j.cej.2012.06.043 CrossRefGoogle Scholar
  28. Moraes BS, Souza TSO, Foresti E (2012) Effect of sulfide concentration on autotrophic denitrification from nitrate and nitrite in vertical fixed-bed reactors. Process Biochem 47(9):1395–1401. doi:10.1016/j.procbio.2012.05.008 CrossRefGoogle Scholar
  29. Nowicki P, Skibiszewska P, Pietrzak R (2014) Hydrogen sulphide removal on carbonaceous adsorbents prepared from coffee industry waste materials. Chem Eng J 248(0):208–215. doi:10.1016/j.cej.2014.03.052 CrossRefGoogle Scholar
  30. Oh S, Kim K, Choi H, Cho J, Kim I (2000) Kinetics and physiological characteristics of autotrophic dentrification by denitrifying sulfur bacteria. Water Sci Technol 42(3–4):59–68Google Scholar
  31. Petersson A, WeLLInGer A (2009) Biogas upgrading technologies—developments and innovations. IEA Bioenergy 20Google Scholar
  32. Potivichayanon S, Pokethitiyook P, Kruatrachue M (2006) Hydrogen sulfide removal by a novel fixed-film bioscrubber system. Process Biochem 41(3):708–715. doi:10.1016/j.procbio.2005.09.006 CrossRefGoogle Scholar
  33. Ramos I, Fdz-Polanco M (2014) Microaerobic control of biogas sulphide content during sewage sludge digestion by using biogas production and hydrogen sulphide concentration. Chem Eng J 250(0):303–311. doi:10.1016/j.cej.2014.04.027 CrossRefGoogle Scholar
  34. Rodriguez G, Dorado AD, Fortuny M, Gabriel D, Gamisans X (2014) Biotrickling filters for biogas sweetening: oxygen transfer improvement for a reliable operation. Process Saf Environ Prot 92(3):261–268. doi:10.1016/j.psep.2013.02.002 CrossRefGoogle Scholar
  35. Sahinkaya E, Hasar H, Kaksonen AH, Rittmann BE (2011) Performance of a sulfide-oxidizing, sulfur-producing membrane biofilm reactor treating sulfide-containing bioreactor effluent. Environ Sci Technol 45(9):4080–4087. doi:10.1021/es200140c PubMedCrossRefGoogle Scholar
  36. Sahinkaya E, Kilic A, Duygulu B (2014) Pilot and full scale applications of sulfur-based autotrophic denitrification process for nitrate removal from activated sludge process effluent. Water Res 60(0):210–217. doi:10.1016/j.watres.2014.04.052 PubMedCrossRefGoogle Scholar
  37. Sahinkaya E, Yurtsever A, Aktaş Ö, Ucar D, Wang Z (2015) Sulfur-based autotrophic denitrification of drinking water using a membrane bioreactor. Chem Eng J 268(0):180–186. doi:10.1016/j.cej.2015.01.045 CrossRefGoogle Scholar
  38. Shang G, Shen G, Liu L, Chen Q, Xu Z (2013) Kinetics and mechanisms of hydrogen sulfide adsorption by biochars. Bioresour Technol 133(0):495–499. doi:10.1016/j.biortech.2013.01.114 PubMedCrossRefGoogle Scholar
  39. Syed M, Soreanu G, Falletta P, Béland M (2006) Removal of hydrogen sulfide from gas streams using biological processes—a review. Can Biosyst Eng 48:2Google Scholar
  40. Tafdrup S (1995) Viable energy production and waste recycling from anaerobic digestion of manure and other biomass materials. Biomass Bioenergy 9(1):303–314CrossRefGoogle Scholar
  41. Tang K, Baskaran V, Nemati M (2009) Bacteria of the sulphur cycle: an overview of microbiology, biokinetics and their role in petroleum and mining industries. Biochem Eng J 44(1):73–94CrossRefGoogle Scholar
  42. Üresin E, Saraç Hİ, Sarıoğlan A, Ay Ş, Akgün F (2014) An experimental study for H2S and CO2 removal via caustic scrubbing system. Process Safety and Environmental Protection (0) doi:10.1016/j.psep.2014.06.013
  43. Yücel M, Konovalov SK, Moore TS, Janzen CP, Luther Iii GW (2010) Sulfur speciation in the upper black sea sediments. Chem Geol 269(3–4):364–375. doi:10.1016/j.chemgeo.2009.10.010 CrossRefGoogle Scholar
  44. Zhang TC, Lampe DG (1999) Sulfur:limestone autotrophic denitrification processes for treatment of nitrate-contaminated water: batch experiments. Water Res 33(3):599–608. doi:10.1016/S0043-1354(98)00281-4 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Environmental EngineeringMarmara UniversityIstanbulTurkey

Personalised recommendations